高级检索+

基于HRV非线性特征的心律不齐自动分析

郭景诗, 乔晓艳

郭景诗, 乔晓艳. 基于HRV非线性特征的心律不齐自动分析[J]. 测试技术学报, 2021, 35(2): 159-164.
引用本文: 郭景诗, 乔晓艳. 基于HRV非线性特征的心律不齐自动分析[J]. 测试技术学报, 2021, 35(2): 159-164.
GUO Jingshi, QIAO Xiaoyan. Automatic Analysis of Arrhythmia Based on HRV Nonlinear Characteristics[J]. Journal of Test and Measurement Technology, 2021, 35(2): 159-164.
Citation: GUO Jingshi, QIAO Xiaoyan. Automatic Analysis of Arrhythmia Based on HRV Nonlinear Characteristics[J]. Journal of Test and Measurement Technology, 2021, 35(2): 159-164.

基于HRV非线性特征的心律不齐自动分析

基金项目: 

山西省重点研发计划资助项目(201803D121102)

太原市小店区产学研合作科技专项资助项目(2019-06)

详细信息
    作者简介:

    郭景诗(1995-),女,硕士生,主要从事机器学习和医学智能诊断研究

    通讯作者:

    乔晓艳(1969-),女,博士,教授,主要从事信号检测、智能信息处理和医学智能诊断等研究

  • 中图分类号: TN911.7;R541.7

Automatic Analysis of Arrhythmia Based on HRV Nonlinear Characteristics

  • 摘要: 心率变异性(HRV)信号包含大量心脏和心血管系统的生理和病理信息,对其进行深入分析可以帮助诊断和预警心律不齐等心脏疾病.论文利用MIT-BIH心电数据库,提取正常心律和心律不齐两种心电数据并进行信号预处理以消除噪声干扰;采用小波变换提取小波系数的模极值和过零点以得到心电R波信号,计算其一阶差分得到HRV序列.然后,提取HRV信号的小波熵、近似熵和基本尺度熵3种非线性特征,并对正常心电和心律不齐心电特征进行差异统计检验.仿真结果表明,HRV信号的非线性特征可以有效地识别正常心律和心律不齐心电信号.
    Abstract: Heart rate variability(HRV) signals contain a large amount of physiological and pathological information of the heart and cardiovascular system, and in-depth analysis of them can help diagnose and warn of heart diseases such as arrhythmia. The paper uses the MIT-BIH ECG database to extract two types of ECG data of normal heart rhythm and arrhythmia, and performs signal preprocessing to eliminate noise interference; the wavelet transform is used to extract the modulus extreme value and zero-crossing point of wavelet coefficients to obtain the ECG R wave Signal.The HRV sequence is obtained by the first-order difference of ECG R-wave signal.The three nonlinear characteristics of wavelet entropy, approximate entropy, and basic scale entropy of the HRV signal are extracted, and the difference between normal ECG and arrhythmia ECG characteristics is statistically tested. The simulation results show that the nonlinear characteristics of the HRV signal can identify the normal heart rhythm and arrhythmia ECG signals effectively.
  • [1] 李梦妮.ECG心率变异性分析的算法设计及FPGA实现[D].西安:西安电子科技大学,2016.
    [2] 孙锦涛.呼吸性窦性心律不齐与混沌[D].上海:复旦大学,2008.
    [3]

    Pandit D,Zhang Li,Liu Chenyu,et al.A lightweight QRS detector for single lead ECG signals using a max-min difference algorithm[J].Computer Methods and Programs in Biomedicine,2017,144(6):61-75.

    [4]

    Tanushree S,Kamalesh K S.QRS complex detection in ECG signals using locally adaptive weighted total variation denoising[J].Computers in Biology and Medicine,2017,87(8):187-199.

    [5]

    Santanu S,Bhupen K,Suresh B,et al.Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities[J].Measurement,2017,108(10):55-66.

    [6]

    Kumar M,Pachori R B,Acharya U R.An efficient automated technique for CAD diagnosis using flexible analytic wavelet transform and entropy features extracted from HRV signals[J].Expert Systems with Applications,2016,633(11):165-172.

    [7]

    Xu X,Liu Y.ECG QRS Complex Detection Using Slope Vector Waveform (SVW) Algorithm[C].Engineering in Medicine and Biology Society,2005:3597-3600.

    [8] 杨衍菲.除颤器的信号处理算法研究[D].深圳:深圳大学,2017.
    [9] 王莉,郭晓东,惠延波,等.基于小波变换的QRS波特征提取算法研究与实现[J].自动化与仪表,2018,33(9):6-9,14.Wang Li,Guo Xiaodong,Hui Yanbo,et al.Research and implementation of QRS baud feature extraction algorithm based on wavelet transform [J].Automation and Instrumentation,2008,33(9):6-9,14.(in Chinese)
    [10] 刘琦,尹国祥.基于Matlab的语音信号预处理技术研究[J].电子技术与软件工程,2014(1):62-63.Liu Qi,Yin Guoxiang.Research on speech signal preprocessing technology based on Matlab [J].Electronic Technology and Software Engineering,2014(1):62-63.(in Chinese)
    [11] 喻一梵,乔晓艳.基于深度学习算法的正负性情绪识别研究[J].测试技术学报,2017,31(5):398-403.Yu Yifan,Qiao xiaoyan.Research on positive and negative emotion recognition based on deep learning algorithm [J].Journal of Test and Measurement Technology,2017,31(5):398-403.(in Chinese)
    [12] 徐文会.基于人体HRV的神经信息提取研究[D].天津:天津大学,2016.
    [13] 高俊杰.混沌时间序列预测研究及应用[D].上海:上海交通大学,2013.
    [14]

    Ziv J,Lempel A.Compression of individual sequences via variable-rate coding[J].Information Theory,IEEE Transactions on,1978,24(5):530-536.

    [15] 李锦,宁新宝.短时心率变异性信号的基本尺度熵分析[J].科学通报,2005(14):1438-1441.Li Jin,Ning Xinbao.Fundamental scale entropy analysis of short-term heart rate variability signals [J].Science Bulletin,2005,(14):1438-1441.(in Chinese)
计量
  • 文章访问数:  3
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-26
  • 刊出日期:  2021-04-29

目录

    /

    返回文章
    返回