Biochar application regulating soil inorganic nitrogen and organic carbon content in cropland in the Central Europe: a seven-year field study
-
Graphical Abstract
-
Abstract
Biochar incorporation into soil has shown potential, in enhancing nitrogen fertilizer (N-fertilizer) efficacy and soil organic carbon content (SOC). This study addresses a critical gap in the literature by investigating the effects of biochar addition over a seven-year period (2014–2020) on inorganic N, SOC, and pH in Haplic Luvisol. The research involved a rain-fed field experiment, with a crop rotation comprising spring barley, maize, spring wheat, and pea. Biochar, applied at the rates of 0, 10, and 20 t ha−1 in 2014, was reapplied to specific plots in 2018. Biochar was also combined with N-fertilizer at three level (N0, N1, and N2). Results showed a significant interactive influence of biochar and N-fertilizer combination on NO3− and NH4+ contents. Intriguingly, the addition of 10 t biochar ha−1 consistently decreased soil inorganic N levels across most of the examined months. Increasing biochar application rates led to a significant rise in pH, establishing a clear, negative correlation between soil pH and inorganic N content. Biochar significantly increased SOC compared to the control, particularly after the reapplication in 2018. However, this effect showed a diminishing trend over time. The study suggests that incorporating biochar treatments may enhance N-fertilizer effectiveness. However, the long-term implications of biochar application with N-fertilizer on N mineralization are specific to individual soil and biochar combinations. Except the application of 20 t ha−1 biochar at N2 in 2019, biochar did not affect the crop yields. Studied soil properties, including those influenced by biochar had nuanced impact on different aspects of crop yield.
-
-