Citation: | Xueyang Zhang, Haoliang Xu, Wei Xiang, Xinxiu You, Huantao Dai, Bin Gao. Lignin-impregnated biochar assisted with microwave irradiation for CO2 capture: adsorption performance and mechanism[J]. Biochar, 2024, 6(1): 22-22. DOI: 10.1007/s42773-024-00310-9 |
[1] |
Atinafu DG, Yeol Yun B, Uk Kim Y, Wi S, Kim S (2021) Introduction of eicosane into biochar derived from softwood and wheat straw: Influence of porous structure and surface chemistry. Chem Eng J 415:128887. https://doi.org/10.1016/j.cej.2021.128887
|
[2] |
Baghery R, Riahi S, Abbasi M, Mohammadi-Khanaposhtani M (2019) Investigation of the CO2 absorption in pure water and MDEA aqueous solution including amine functionalized multi-wall carbon nano tubes. J Mol Liq 293:111431. https://doi.org/10.1016/j.molliq.2019.111431
|
[3] |
Cao L, Zhang X, Xu Y, Xiang W, Wang R, Ding F, Hong P, Gao B (2022) Straw and wood based biochar for CO2 capture: adsorption performance and governing mechanisms. Sep Purif Technol 287:120592. https://doi.org/10.1016/j.seppur.2022.120592
|
[4] |
Cao W, Xu H, Zhang X, Xiang W, Qi G, Wan L, Gao B (2023) Novel post-treatment of ultrasound assisting with acid washing enhance lignin-based biochar for CO2 capture: adsorption performance and mechanism. Chem Eng J 471:144523. https://doi.org/10.1016/j.cej.2023.144523
|
[5] |
Chang C-W, Kao Y-H, Shen P-H, Kang P-C, Wang C-Y (2020) Nanoconfinement of metal oxide MgO and ZnO in zeolitic imidazolate framework ZIF-8 for CO2 adsorption and regeneration. J Hazard Mater 400:122974. https://doi.org/10.1016/j.jhazmat.2020.122974
|
[6] |
Chio C, Sain M, Qin W (2019) Lignin utilization: a review of lignin depolymerization from various aspects. Renew Sustain Energy Rev 107:232–249. https://doi.org/10.1016/j.rser.2019.03.008
|
[7] |
Cho D-W, Kwon G, Yoon K, Tsang YF, Ok YS, Kwon EE, Song H (2017) Simultaneous production of syngas and magnetic biochar via pyrolysis of paper mill sludge using CO2 as reaction medium. Energy Convers Manage 145:1–9. https://doi.org/10.1016/j.enconman.2017.04.095
|
[8] |
Chu G, Zhao J, Chen F, Dong X, Zhou D, Liang N, Wu M, Pan B, Steinberg CEW (2017) Physi-chemical and sorption properties of biochars prepared from peanut shell using thermal pyrolysis and microwave irradiation. Environ Pollut 227:372–379. https://doi.org/10.1016/j.envpol.2017.04.067
|
[9] |
Creamer AE, Gao B, Zhang M (2014) Carbon dioxide capture using biochar produced from sugarcane bagasse and hickory wood. Chem Eng J 249:174–179. https://doi.org/10.1016/j.cej.2014.03.105
|
[10] |
Dai Q, Liu Q, Zhang X, Cao L, Hu B, Shao J, Ding F, Guo X, Gao B (2022) Synergetic effect of co-pyrolysis of sewage sludge and lignin on biochar production and adsorption of methylene blue. Fuel 324:124587. https://doi.org/10.1016/j.fuel.2022.124587
|
[11] |
Devi P, Saroha AK (2015a) Effect of pyrolysis temperature on polycyclic aromatic hydrocarbons toxicity and sorption behaviour of biochars prepared by pyrolysis of paper mill effluent treatment plant sludge. Biores Technol 192:312–320. https://doi.org/10.1016/j.biortech.2015.05.084
|
[12] |
Devi P, Saroha AK (2015b) Simultaneous adsorption and dechlorination of pentachlorophenol from effluent by Ni–ZVI magnetic biochar composites synthesized from paper mill sludge. Chem Eng J 271:195–203. https://doi.org/10.1016/j.cej.2015.02.087
|
[13] |
Ding S, Liu Y (2020) Adsorption of CO2 from flue gas by novel seaweed-based KOH-activated porous biochars. Fuel 260:116382. https://doi.org/10.1016/j.fuel.2019.116382
|
[14] |
Dissanayake PD, Choi SW, Igalavithana AD, Yang X, Tsang DCW, Wang C-H, Kua HW, Lee KB, Ok YS (2020) Sustainable gasification biochar as a high efficiency adsorbent for CO2 capture: a facile method to designer biochar fabrication. Renew Sustain Energy Rev 124:109785. https://doi.org/10.1016/j.rser.2020.109785
|
[15] |
Foong SY, Liew RK, Yang Y, Cheng YW, Yek PNY, Wan Mahari WA, Lee XY, Han CS, Vo D-VN, Van Le Q, Aghbashlo M, Tabatabaei M, Sonne C, Peng W, Lam SS (2020) Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: progress, challenges, and future directions. Chem Eng J 389:124401. https://doi.org/10.1016/j.cej.2020.124401
|
[16] |
Ghanbarpour Mamaghani Z, Hawboldt KA, MacQuarrie S (2023) Adsorption of CO2 using biochar—review of the impact of gas mixtures and water on adsorption. J Environ Chem Eng 11(3):109643. https://doi.org/10.1016/j.jece.2023.109643
|
[17] |
Goel C, Mohan S, Dinesha P (2021) CO2 capture by adsorption on biomass-derived activated char: a review. Sci Total Environ 798:149296. https://doi.org/10.1016/j.scitotenv.2021.149296
|
[18] |
Gong H, Tan Z, Zhang L, Huang Q (2019) Preparation of biochar with high absorbability and its nutrient adsorption–desorption behaviour. Sci Total Environ 694:133728. https://doi.org/10.1016/j.scitotenv.2019.133728
|
[19] |
Guo T, Tian W, Wang Y (2022) Effect of pore structure on CO2 adsorption performance for ZnCl2/FeCl3/H2O(g) co-activated walnut shell-based biochar. Atmosphere 13(7):1110. https://doi.org/10.3390/atmos13071110
|
[20] |
Hong WY (2022) A techno-economic review on carbon capture, utilisation and storage systems for achieving a net-zero CO2 emissions future. Carbon Capture Sci Technol 3:100044. https://doi.org/10.1016/j.ccst.2022.100044
|
[21] |
Huang Y-F, Chiueh P-T, Shih C-H, Lo S-L, Sun L, Zhong Y, Qiu C (2015) Microwave pyrolysis of rice straw to produce biochar as an adsorbent for CO2 capture. Energy 84:75–82. https://doi.org/10.1016/j.energy.2015.02.026
|
[22] |
Igalavithana AD, Choi SW, Dissanayake PD, Shang J, Wang C-H, Yang X, Kim S, Tsang DCW, Lee KB, Ok YS (2020a) Gasification biochar from biowaste (food waste and wood waste) for effective CO2 adsorption. J Hazard Mater 391:121147. https://doi.org/10.1016/j.jhazmat.2019.121147
|
[23] |
Igalavithana AD, Choi SW, Shang J, Hanif A, Dissanayake PD, Tsang DCW, Kwon J-H, Lee KB, Ok YS (2020b) Carbon dioxide capture in biochar produced from pine sawdust and paper mill sludge: effect of porous structure and surface chemistry. Sci Total Environ 739:139845. https://doi.org/10.1016/j.scitotenv.2020.139845
|
[24] |
Jellali S, El-Bassi L, Charabi Y, Usman M, Khiari B, Al-Wardy M, Jeguirim M (2022) Recent advancements on biochars enrichment with ammonium and nitrates from wastewaters: a critical review on benefits for environment and agriculture. J Environ Manage 305:114368. https://doi.org/10.1016/j.jenvman.2021.114368
|
[25] |
Jung S, Park Y-K, Kwon EE (2019) Strategic use of biochar for CO2 capture and sequestration. J CO2 Utilization 32:128–139. https://doi.org/10.1016/j.jcou.2019.04.012
|
[26] |
Karimi M, Shirzad M, Silva JAC, Rodrigues AE (2022) Biomass/Biochar carbon materials for CO2 capture and sequestration by cyclic adsorption processes: a review and prospects for future directions. J CO2 Utilization 57:101890. https://doi.org/10.1016/j.jcou.2022.101890
|
[27] |
Kim H-B, Kim J-G, Kim T, Alessi DS, Baek K (2020) Mobility of arsenic in soil amended with biochar derived from biomass with different lignin contents: relationships between lignin content and dissolved organic matter leaching. Chem Eng J 393:124687. https://doi.org/10.1016/j.cej.2020.124687
|
[28] |
Kostas ET, Beneroso D, Robinson JP (2017) The application of microwave heating in bioenergy: a review on the microwave pre-treatment and upgrading technologies for biomass. Renew Sustain Energy Rev 77:12–27. https://doi.org/10.1016/j.rser.2017.03.135
|
[29] |
Kumar KV, Preuss K, Lu L, Guo ZX, Titirici MM (2015) Effect of nitrogen doping on the CO2 adsorption behavior in nanoporous carbon structures: a molecular simulation study. J Phys Chem C 119(39):22310–22321. https://doi.org/10.1021/acs.jpcc.5b06017
|
[30] |
Li G, Shen B, Li Y, Zhao B, Wang F, He C, Wang Y, Zhang M (2015) Removal of element mercury by medicine residue derived biochars in presence of various gas compositions. J Hazard Mater 298:162–169. https://doi.org/10.1016/j.jhazmat.2015.05.031
|
[31] |
Li J, Dai J, Liu G, Zhang H, Gao Z, Fu J, He Y, Huang Y (2016) Biochar from microwave pyrolysis of biomass: a review. Biomass Bioenerg 94:228–244. https://doi.org/10.1016/j.biombioe.2016.09.010
|
[32] |
Li J, Liang N, Jin X, Zhou D, Li H, Wu M, Pan B (2017) The role of ash content on bisphenol A sorption to biochars derived from different agricultural wastes. Chemosphere 171:66–73. https://doi.org/10.1016/j.chemosphere.2016.12.041
|
[33] |
Li H, Li J, Fan X, Li X, Gao X (2019) Insights into the synergetic effect for co-pyrolysis of oil sands and biomass using microwave irradiation. Fuel 239:219–229. https://doi.org/10.1016/j.fuel.2018.10.139
|
[34] |
Liao W, Tang C, Zheng H, Ding J, Zhang K, Wang H, Lu J, Huang W, Zhang Z (2022) Tuning activity and selectivity of CO2 hydrogenation via metal-oxide interfaces over ZnO-supported metal catalysts. J Catal 407:126–140. https://doi.org/10.1016/j.jcat.2022.01.037
|
[35] |
Lin J, Sun S, Xu D, Cui C, Ma R, Luo J, Fang L, Li H (2022) Microwave directional pyrolysis and heat transfer mechanisms based on multiphysics field stimulation: design porous biochar structure via controlling hotspots formation. Chem Eng J 429:132195. https://doi.org/10.1016/j.cej.2021.132195
|
[36] |
Ma Y, He X, Tang S, Xu S, Qian Y, Zeng L, Tang K (2022) Enhanced 2-D MOFs nanosheets/PIM-PMDA-OH mixed matrix membrane for efficient CO2 separation. J Environ Chem Eng 10(2):107274. https://doi.org/10.1016/j.jece.2022.107274
|
[37] |
Mankar JS, Rayalu SS, Balasubramanian R, Krupadam RJ (2021) High performance CO2 capture at elevated temperatures by using cenospheres prepared from solid waste, fly ash. Chemosphere 284:131405. https://doi.org/10.1016/j.chemosphere.2021.131405
|
[38] |
Mašek O, Budarin V, Gronnow M, Crombie K, Brownsort P, Fitzpatrick E, Hurst P (2013) Microwave and slow pyrolysis biochar—comparison of physical and functional properties. J Anal Appl Pyrol 100:41–48. https://doi.org/10.1016/j.jaap.2012.11.015
|
[39] |
Mushtaq F, Mat R, Ani FN (2014) A review on microwave assisted pyrolysis of coal and biomass for fuel production. Renew Sustain Energy Rev 39:555–574. https://doi.org/10.1016/j.rser.2014.07.073
|
[40] |
Panwar NL, Pawar A (2022) Influence of activation conditions on the physicochemical properties of activated biochar: a review. Biomass Conversion Biorefinery 12(3):925–947. https://doi.org/10.1007/s13399-020-00870-3
|
[41] |
Petrovic B, Gorbounov M, Masoudi Soltani S (2021) Influence of surface modification on selective CO2 adsorption: a technical review on mechanisms and methods. Microporous Mesoporous Mater 312:110751. https://doi.org/10.1016/j.micromeso.2020.110751
|
[42] |
Raganati F, Alfe M, Gargiulo V, Chirone R, Ammendola P (2019) Kinetic study and breakthrough analysis of the hybrid physical/chemical CO2 adsorption/desorption behavior of a magnetite-based sorbent. Chem Eng J 372:526–535. https://doi.org/10.1016/j.cej.2019.04.165
|
[43] |
Rashidi NA, Yusup S (2016) An overview of activated carbons utilization for the post-combustion carbon dioxide capture. J CO2 Utilization 13:1–16. https://doi.org/10.1016/j.jcou.2015.11.002
|
[44] |
Salema AA, Ani FN, Mouris J, Hutcheon R (2017) Microwave dielectric properties of Malaysian palm oil and agricultural industrial biomass and biochar during pyrolysis process. Fuel Process Technol 166:164–173. https://doi.org/10.1016/j.fuproc.2017.06.006
|
[45] |
Santos JL, Mäki-Arvela P, Monzón A, Murzin DY, Centeno MÁ (2020) Metal catalysts supported on biochars: part I synthesis and characterization. Appl Catal B 268:118423. https://doi.org/10.1016/j.apcatb.2019.118423
|
[46] |
Shafawi AN, Mohamed AR, Lahijani P, Mohammadi M (2021) Recent advances in developing engineered biochar for CO2 capture: an insight into the biochar modification approaches. J Environ Chem Eng 9(6):106869. https://doi.org/10.1016/j.jece.2021.106869
|
[47] |
Shirvanimoghaddam K, Czech B, Abdikheibari S, Brodie G, Kończak M, Krzyszczak A, Al-Othman A, Naebe M (2022) Microwave synthesis of biochar for environmental applications. J Anal Appl Pyrol 161:105415. https://doi.org/10.1016/j.jaap.2021.105415
|
[48] |
Siddique IJ, Salema AA, Antunes E, Vinu R (2022) Technical challenges in scaling up the microwave technology for biomass processing. Renew Sustain Energy Rev 153:111767. https://doi.org/10.1016/j.rser.2021.111767
|
[49] |
Sreedhar I, Vaidhiswaran R, Kamani BM, Venugopal A (2017) Process and engineering trends in membrane based carbon capture. Renew Sustain Energy Rev 68:659–684. https://doi.org/10.1016/j.rser.2016.10.025
|
[50] |
Sun Y, Wang T, Sun X, Bai L, Han C, Zhang P (2021) The potential of biochar and lignin-based adsorbents for wastewater treatment: comparison, mechanism, and application—a review. Ind Crops Prod 166:113473. https://doi.org/10.1016/j.indcrop.2021.113473
|
[51] |
Torrisi A, Bell RG, Mellot-Draznieks C (2010) Functionalized MOFs for enhanced CO2 capture. Cryst Growth Des 10(7):2839–2841. https://doi.org/10.1021/cg100646e
|
[52] |
Tsechansky L, Graber ER (2014) Methodological limitations to determining acidic groups at biochar surfaces via the Boehm titration. Carbon 66:730–733. https://doi.org/10.1016/j.carbon.2013.09.044
|
[53] |
Xiang W, Zhang X, Cao C, Quan G, Wang M, Zimmerman AR, Gao B (2022a) Microwave-assisted pyrolysis derived biochar for volatile organic compounds treatment: characteristics and adsorption performance. Biores Technol 355:127274. https://doi.org/10.1016/j.biortech.2022.127274
|
[54] |
Xiang W, Zhang X, Luo J, Li Y, Guo T, Gao B (2022b) Performance of lignin impregnated biochar on tetracycline hydrochloride adsorption: governing factors and mechanisms. Environ Res 215:114339. https://doi.org/10.1016/j.envres.2022.114339
|
[55] |
Zhang J, Liu J, Liu R (2015) Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate. Biores Technol 176:288–291. https://doi.org/10.1016/j.biortech.2014.11.011
|
[56] |
Zhang X, Gao B, Creamer AE, Cao C, Li Y (2017) Adsorption of VOCs onto engineered carbon materials: a review. J Hazard Mater 338:102–123. https://doi.org/10.1016/j.jhazmat.2017.05.013
|
[57] |
Zhang X, Miao X, Xiang W, Zhang J, Cao C, Wang H, Hu X, Gao B (2021) Ball milling biochar with ammonia hydroxide or hydrogen peroxide enhances its adsorption of phenyl volatile organic compounds (VOCs). J Hazard Mater 403:123540. https://doi.org/10.1016/j.jhazmat.2020.123540
|
[58] |
Zhang J, Huang D, Shao J, Zhang X, Zhang S, Yang H, Chen H (2022a) A new nitrogen-enriched biochar modified by ZIF-8 grafting and annealing for enhancing CO2 adsorption. Fuel Process Technol 231:107250. https://doi.org/10.1016/j.fuproc.2022.107250
|
[59] |
Zhang X, Cao L, Xiang W, Xu Y, Gao B (2022b) Preparation and evaluation of fine-tuned micropore biochar by lignin impregnation for CO2 and VOCs adsorption. Sep Purif Technol 295:121295. https://doi.org/10.1016/j.seppur.2022.121295
|
[60] |
Zhang X, Xiang W, Miao X, Li F, Qi G, Cao C, Ma X, Chen S, Zimmerman AR, Gao B (2022c) Microwave biochars produced with activated carbon catalyst: characterization and sorption of volatile organic compounds (VOCs). Sci Total Environ 827:153996. https://doi.org/10.1016/j.scitotenv.2022.153996
|
[61] |
Zhang Y, Wang S, Feng D, Gao J, Dong L, Zhao Y, Sun S, Huang Y, Qin Y (2022d) Functional biochar synergistic solid/liquid-phase CO2 capture: a review. Energy Fuels 36(6):2945–2970. https://doi.org/10.1021/acs.energyfuels.1c04372
|
[62] |
Zubbri NA, Mohamed AR, Kamiuchi N, Mohammadi M (2020) Enhancement of CO2 adsorption on biochar sorbent modified by metal incorporation. Environ Sci Pollut Res 27(11):11809–11829. https://doi.org/10.1007/s11356-020-07734-3
|