高级检索+

抗褐化剂对天女木兰芽外植体褐化与酚酸氧化的影响

Effects of Browning Inhibitors on Bud Explants Browning and Phenolic Acids Oxidation of Magnolia sieboldii K. Koch

  • 摘要:
    目的 确定引起天女木兰褐化现象的酚酸种类,筛选出最佳抗褐化剂及使用最适浓度。
    方法 在B5培养基中分别添加各种抗褐化剂,芽外植体培养30 d后计算出褐化率,对褐化率结果进行统计分析,并比较三种抗褐化剂的抗褐化效果;另外,在组培过程中定期取样,利用HPLC测定芽外植体中咖啡酸、绿原酸和对香豆酸含量变化。
    结果 表明:天女木兰芽外植体褐化过程中咖啡酸和绿原酸含量下降幅度较大,而对香豆酸含量下降幅度较小,说明咖啡酸和绿原酸容易被氧化,而对香豆酸较为稳定;三种抗褐化剂控制褐化现象发生的最佳效果排序为VC>PVP>CA;尽管PVP控制酚酸氧化效果不如CA,但是预防褐化效果确强于CA,其原因是由于二者抗褐化机理不同所致;VC使用的最适浓度为500 mg·L-1,如果超过此浓度会导致外植体褐化率增加;PVP最适浓度为1 000~1 500 mg·L-1,CA最适浓度为300 mg·L-1
    结论 天女木兰芽外植体褐化底物是咖啡酸和绿原酸,而与对香豆酸无关;VC、PVP和CA三种抗褐化剂抗褐化机理各不相同,综合比较VC抗褐化效果最好,其次是PVP,CA排在最后。

     

    Abstract:
    Objective To identify the types of phenolic acids that result in bud explants browning of Magnolia sieboldii and determine the most effective anti-browning agent at an optimum concentration.
    Method Bud explants were cultured in B5 medium for 30 days. At the beginning, three kinds of anti-browning agents were added separately to the B5 medium. The browning rates were calculated and analyzed. Then the effects of the three inhibitors on anti-browning were compared on the basis of the browning rates. In addition, the content variations of caffeic acid, chlorogenic acid, and p-coumaric acid in the bud explants were measured with HPLC using samples regularly selected during tissue culturing.
    Result The results showed that the contents of caffeic acid and chlorogenic acid decreased sharply while the content of p-coumaric acid experienced a slight decrease, proving that caffeic acid and chlorogenic acid were more likely to be oxidized than p-coumaric acid. Moreover, the effects of the three inhibitors on anti-browning were sorted in a decreasing order of VC, PVP, and CA. Although PVP was inferior to CA with respect to controlling phenolic acid oxidation, its anti-browning effect was more efficient than CA. This result was explained by their different mechanisms for anti-browning. Lastly, the optimal concentration for VC was 500 mg·L-1, and a higher concentration would result in a greater browning rate of the bud explants. Respective optimal concentrations for PVP and CA were 1 000~1 500 mg·L-1 and 300 mg·L-1.
    Conclusion The browning substrates in bud explants of M. sieboldii are caffeic acid and chlorogenic acid rather than p-coumaric acid. VC, PVP, and CA have distinguishable anti-browning mechanisms and the anti-browning effects of them will decrease gradually.

     

/

返回文章
返回