Abstract:
Biomass-based carbon materials had the advantages of low cost, wide source, good electrical conductivity, and good electrochemical stability. Through heteroatom doping, the performance of biomass-based carbon materials was further improved. This paper summarized the methods of introducing heteroatoms into biomass-based carbon materials(in-situ doping and diffusion doping) and their respective advantages and disadvantages. The types of heteroatom doping(nitrogen doping, oxygen doping, phosphorus doping, sulfur doping, halogen doping, and multi-element co-doping) and the effects of heteroatom doping on the structure and properties of biomass-based carbon materials were briefly described. The applications of heteroatom doped carbon materials in energy storage, adsorption separation, and catalytic oxidation were reviewed, and the development direction of heteroatom-doped biomass-based carbon materials was also prospected.