高级检索+

考虑严重程度的城市道路交叉口事故密度空间分布

张文会, 王美娜, 强添纲

张文会, 王美娜, 强添纲. 考虑严重程度的城市道路交叉口事故密度空间分布[J]. 江苏大学学报(自然科学版), 2023, 44(2): 133-141.
引用本文: 张文会, 王美娜, 强添纲. 考虑严重程度的城市道路交叉口事故密度空间分布[J]. 江苏大学学报(自然科学版), 2023, 44(2): 133-141.
ZHANG Wen-hui, WANG Mei-na, QIANG Tian-gang. Spatial distribution of traffic accident density at urban road intersection considering severity[J]. Journal of Jiangsu University(Natural Science Edition), 2023, 44(2): 133-141.
Citation: ZHANG Wen-hui, WANG Mei-na, QIANG Tian-gang. Spatial distribution of traffic accident density at urban road intersection considering severity[J]. Journal of Jiangsu University(Natural Science Edition), 2023, 44(2): 133-141.

考虑严重程度的城市道路交叉口事故密度空间分布

基金项目: 

国家重点研发计划项目(2017YFC0803901)

中央高校基本科研业务费专项资金资助项目(2572021DT09)

黑龙江省重点研发计划项目(JD22A014)

详细信息
    作者简介:

    张文会(1978—),男,黑龙江哈尔滨人,博士,副教授(rayear@163.com),主要从事交通安全研究;王美娜(1995—),女,黑龙江宾县人,硕士研究生(mn55177@163.com),主要从事交通信息工程及控制研究

  • 中图分类号: U491.31

Spatial distribution of traffic accident density at urban road intersection considering severity

  • 摘要: 为探究城市道路交叉口交通事故的空间分布特征,找出影响事故严重程度的关键因素,基于哈尔滨市城市道路交通事故数据库,获得有效交叉口事故样本1 758起,并提取9类事故特征.采用密度分析方法,分别获得考虑路网密度、交叉口密度、严重程度的事故密度空间分布特征,并将其可视化显示.将事故严重程度分为死亡事故和非死亡事故2类,选择事故严重程度预测效果最好的随机森林算法分别对整个城市区域、低密度区域和中高密度区域影响交叉口事故严重程度的因素排序.结果表明:考虑路网密度、交叉口密度和事故严重程度时,交叉口事故空间分布呈现一定的差异性;对于整个城市区域、低密度区域和中高密度区域,季节和天气情况均为事故严重程度的主要影响因素,交叉口类型、事故形态和时段分别为3类区域的主要影响因素.
    Abstract: To explore the spatial distribution patterns of traffic accidents at urban road intersections and find out the key factors affecting the severity of accidents, 1 758 valid intersection accident samples and 9 categories features were extracted from the traffic accident database of Harbin. The spatial distribution of intersection accidents was visualized, and the density analysis algorithm was used to obtain the spatial distribution characteristics of intersection accidents considering the road network density, intersection density and severity respectively. The accident severity was divided into fatal accidents and non-fatal accidents. The random forest was used to rank the significant factors affecting the accident severity in the whole urban area, low density area and medium-high density area. The results show that the spatial distribution of intersection accidents differs considering road network density, intersection density and severity respectively. Season and weather are the significant factors for the whole urban, low density and medium-high density area, while intersection type, accident type and time of day are the respectively significant factors for the three types of areas.
  • [1]

    OUNI F,BELLOUMI M.Pattern of road traffic crash hot zones versus probable hot zones in Tunisia:a geospatial analysis[J].Accident Analysis & Prevention,2019,128:185-196.

    [2]

    LE K G,LIU P,LIN L T.Determining the road traffic accident hotspots using GIS-based temporal-spatial statistical analytic techniques in Hanoi,Vietnam[J].Geo-spatial Information Science,2020,23(2):153-164.

    [3]

    FAN Z Y,LIU C,CAI D J,et al.Research on black spot identification of safety in urban traffic accidents based on machine learning method[J].Safety Science,2019,118:607-616.

    [4] 陆化普,罗圣西,李瑞敏.基于GIS分析的深圳市道路交通事故空间分布特征研究[J].中国公路学报,2019,32(8):156-164.LU H P,LUO S X,LI R M.GIS-based spatial patterns analysis of urban road traffic crashes in Shenzhen[J].China Journal of Highway and Transport,2019,32(8):156-164.(in Chinese)
    [5] 张光南,钟俏婷,杨清玄.交通违法事故时空分布特征及其影响因素—以广州市为例[J].交通运输系统工程与信息,2019,19(3):208-214.ZHANG G N,ZHONG Q T,YANG Q X.Temporal-spatial characteristics and influencing factors of at-fault traffic crashes:a case study in Guangzhou[J].Journal of Transportation Systems Engineering and Information Technology,2019,19(3):208-214.(in Chinese)
    [6] 田准,张生瑞.优化经验贝叶斯事故黑点识别与排序方法[J].长安大学学报(自然科学版),2019,39(5):115-126.TIAN Z,ZHANG S R.Identification and ranking of accident black spots using advanced empirical Bayes me-thod[J].Journal of Chang′an University(Natural Science Edition),2019,39(5):115-126.(in Chinese)
    [7] 白玉,魏毅.重大道路交通事故严重程度影响因素分析[J].交通与运输,2022,38(3):22-26.BAI Y,WEI Y.Influencing factors on severity of se-rious road traffic accidents[J].Traffic & Transportation,2022,38(3):22-26.(in Chinese)
    [8]

    SUN Z Y,WANG J Y,CHEN Y Y,et al.Influence factors on injury severity of traffic accidents and diffe-rences in urban functional zones:the empirical analysis of Beijing[J].International Journal of Environmental Research and Public Health,2018,15(12):2722-2738.

    [9] 柳本民,闫寒.基于SVM事故分类的连环追尾事故影响因素分析[J].交通信息与安全,2020,38(1):43-51.LIU B M,YAN H.An analysis of influencing factors of multi-vehicle rear-end accidents based on accident classification of SVM[J].Journal of Transport Information and Safety,2020,38(1):43-51.(in Chinese)
    [10]

    MAO X H,YUAN C W,GAN J H,et al.Risk factors affecting traffic accidents at urban weaving sections:evidence from China[J].International Journal of Environmental Research and Public Health,2019,16(9):1542-1559.

    [11] 张文会,于秋影,沈航先.基于SEM的高速公路事故路段行车风险因素辨识[J].森林工程,2021,37(2):95-103.ZHANG W H,YU Q Y,SHEN H X.Identification for driving risk factors of expressway accidents section based on SEM[J].Forest Engineering,2021,37(2):95-103.(in Chinese)
    [12]

    LEE J,CHAE J,YOON T,et al.Traffic accident severity analysis with rain-related factors using structural equation modeling:a case study of Seoul city[J].Accident Analysis & Prevention,2018,112:1-10.

  • 期刊类型引用(1)

    1. 陈孝如,程学军,曾碧卿. 基于特征选择的无线传感网络攻击流量快速阻断研究. 传感技术学报. 2025(03): 526-532 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 5
出版历程
  • 收稿日期:  2021-06-04
  • 刊出日期:  2023-03-09

目录

    /

    返回文章
    返回