Expression of Beta-galactosidase Gene in Pichia pastoris Improved by Non-methanol Induced Episomal Expression Vector
-
摘要: 半乳糖苷酶是一种重要的食品工业用酶,目前主要通过毕赤酵母甲醇诱导型表达系统进行生产,但甲醇的使用存在火灾、残留毒性等安全隐患,已逐渐成为食品工业用酶生产中备受关注的问题之一。为满足β-半乳糖苷酶安全生产的需要,本研究利用强组成型启动子PGCW14和源自酵母的自我复制序列PARS构建了一种新型非甲醇诱导游离型表达载体pGCW14ZαA-PARS,并且在此基础上分别构建了非甲醇诱导游离型重组表达菌株KM71/p GCW14ZαA-PARS-Aoβ-GAL,用以改善米曲霉Aspergillus Oryzae RIB40(ATCC42149)来源的β-半乳糖苷酶基因(Aoβ-GAL)在毕赤酵母中的表达。实验结果表明,该非甲醇诱导游离型表达载体在毕赤酵母中传代培养90代后仍保持83.22%的遗传稳定性,完全能够满足工业上大规模生产的需要。在10%流速补充碳源的条件下,非甲醇诱导游离表达菌株KM71/pGCW14ZαA-PARS-Aoβ-GAL经高密度发酵的最高酶活性和比活性分别为126.4 U/m L和26.2 U/mg,分别是传统甲醇诱导型表达菌株KM71/pPIC9k-Aoβ-GAL的1.94倍和3.12倍,且发酵周期缩短了36 h。可见,本研究构建的非甲醇诱导游离型表达载体可有效改善β-半乳糖苷酶在毕赤酵母中的表达,且在食品工业用酶的安全、高效工业化生产中具有一定的应用前景。
-
关键词:
- 组成型启动子PGCW14 /
- 游离型表达载体 /
- 重组毕赤酵母 /
- β-半乳糖苷酶 /
- 高密度发酵
Abstract: galactosidase is an important enzyme for the food industry, and it is usually produced by Pichia pastoris methanol-induced expression system. However, the use of methanol has several safety hazards such as causing fire and residual toxicity, which has gradually become one of the most concerned issues in industrial production of food-grade enzymes. In order to meet the needs of safe production of β-galactosidase, this study constructed a novel methanol-free episomal expression vector, pGCW14 ZαA-PARS, using strong constitutive promoter PGCW14 and the yeast-derived self-replicating sequence PARS. Then the recombinant expression strain KM71/pGCW14 ZαA-PARS-Aoβ-GAL was constructed to improve the expression of the β-galactosidase gene(Aoβ-GAL)derived from Aspergillus oryzae RIB40(ATCC42149). Results showed that the methanol-free episomal expression vector maintained 83.22% genetic stability after subculture in Pichia pastoris for 90 generations, which could fully meet the needs of industrial large-scale production. After high-density fermentation under a 10% flow rate fed-batch of carbon source, the highest enzyme activity and specific activity of the strain KM71/pGCW14 ZαA-PARS-Aoβ-GAL were 126.4 U/m L and 26.2 U/mg, which were 1.94 times and 3.12 times of those of the traditional methanol-inducible expression strain KM71/pPIC9 k-Aoβ-GAL, respectively. Besides, the fermentation cycle was shortened by 36 h. It indicated that the novel methanol-free episomal expression vector constructed in this study could effectively improve the expression of β-galactosidase in Pichia pastoris, and has great application prospects in the safe and efficient industrial production of food enzymes. -
-
[1] Alvarez A.,and Sas J.,1961,Beta-galactosidase changes in the developing intestinal tract of the rat,Nature,190(4778):826-827.
[2] AntosováZ.,and SychrováH.,2016,Yeast hosts for the production of recombinant laccases:a review,Mol.Biotechnol.,58(2):93-116.
[3] Bankefa O.E.,Wang M.Y.,Zhu J.L.,and Li Y.,2018,Hac1p homologues from higher eukaryotes can improve the secretion of heterologous proteins in the yeast Pichia pastoris,Biotechnol.Lett.,40(7):1149-1156.
[4] Bernales S.,Papa F.R.,and Walter P.,2006,Intracellular signaling by the unfolded protein response,Ann.Rev.Cell Dev.Biol.,22(1):487-508.
[5] Biswas T.K.,1985,β-galactosidase activity in the germinating seeds of vigna sinensis,Phytochemistry,23(12):2831-2833.
[6] Camattari A.,Goh A.,Yip L.Y.,Tan A.H.M.,Ng S.W.,Tran A.,Liu G.W.,Liachko I.,Dunham M.J.,and Rancati G.,2016,Characterization of a panars-based episomal vector in the methylotrophic yeast Pichia pastoris for recombinant protein production and synthetic biology applications,Microb.Cell Fact.,15(1):139.
[7] Cereghino J.L.,and Cregg J.M.,2000,Heterologous protein expression in the methylotrophic yeast Pichia pastoris,FEMSMicrobiol.Rev.,24(1):45-66.
[8] Clare J.J.,Rayment F.B.,Ballantine S.P.,Sreekrishna K.,and Romanos M.A.,1991,High-level expression of tetanus toxin fragment c in Pichia pastoris strains containing multiple tandem integrations of the gene,Biotechnology,9(5):455-460.
[9] Cos O.,Ramón R.,Montesinos J.L.,and Valero F.,2006,Operational strategies,monitoring and control of heterologous protein production in the methylotrophic yeast Pichia pastoris under different promoters:a review,Microb.Cell Fact.,5(1):17.
[10] Cregg J.M.,2000,Recombinant protein expression in Pichia pastoris,Mol.Biotechnol.,16(1):23-52.
[11] Daly R.,and Hearn M.T.W.,2005,Expression of heterologous proteins in Pichia pastoris:A useful experimental tool in protein engineering and production,J.Mol.Recognit.,18(2):119-138.
[12] Gao X.,Jing W.,and Dan W.,2019,Rational design of the betagalactosidase from Aspergillus oryzae to improve galactooligosaccharide production,Food Chem.,286(2):362-367.
[13] Juven-Gershon T.,and Kadonaga J.T.,2010,Regulation of gene expression via the core promoter and the basal transcriptional machinery,Dev.Biol.,339(2):225-229.
[14] Liang S.L.,Zou C.J.,Lin Y.,Zhang X.W.,and Ye Y.R.,2013,I-dentification and characterization of pgcw14:a novel,strong constitutive promoter of Pichia pastoris,Biotechnol.Lett.,35(11):1865-1871.
[15] Liu Q.H.,Chen T.,and Huang J.,2008,Stability of recombinant SMD1168/pGAPZαA-VAP1 and its expression of WSSV-VAP1 by fermentation,Haiyang Shuichan Yanjiu(Progress in Fishery Sciences),29(5):95-99.(刘庆慧,陈婷,黄倢,2008,重组毕赤酵母smd1168/pgapzαa-vap1稳定性及发酵表达wssv-vap1,海洋水产研究,29(5):95-99.) [16] Lu Y.C.,and Jiang L.,2013,The strategies for efficient expression of recombinant protein in Pichia pastoris,Weishengwu Mianyixsue Jinzhan(Prog Microbiol Immunol),41(1):70-76.(陆永超,蒋琳,2013,毕赤酵母高效表达策略概述,微生物学免疫学进展,41(1):70-76.) [17] Macauley-Patrick S.,Fazenda M.L.,Mcneil B.,and Harvey L.M.,2005,Heterologous protein production using the pichia pastoris expression system,Yeast,22(4):249-270.
[18] Mlichova Z.,and Rosenberg M.,2006,Current trends ofβ-galactosidase application in food technology,J.Food Nutr.Res.,45(2):47-54.
[19] Pan Y.,Wu D.,and Wu J.,2018,Improving the expression of recombinant xylanase in Pichia pastoris with episomal expression plasmid,Shengwu Gongcheng Xuebao(Chinese Journal of Biotechnology),34(5):88-97.(潘阳,吴丹,吴敬,2018,利用游离型表达质粒强化毕赤酵母表达木聚糖酶,生物工程学报,34(5):88-97.) [20] Pressey R.,1983,Beta-galactosidases in ripening tomatoes,Plant Physiol.,71(1):132-135.
[21] Rahim K.A.A.,and Lee B.H.,1991,Specificity,inhibitory studies,and oligosaccharide formation byβ-galactosidase from psychrotrophic Bacillus subtilis kl88,J.Dairy Sci.,74(6):1773-1778.
[22] Sun X.J.,Duan X.G.,Wu D.,Chen J.,and Wu J.,2014,Characteriza tion of sμLfolobus solfataricusβ-galactosidase mutant f441y expressed in Pichia pastoris,J.Sci.Food Agric.,94(7):1359-1365.
[23] Taxis C.,Hitt R.,Park S.H.,Deak P.M.,Kostova Z.,and Wolf D.H.,2003,Use of modular substrates demonstrates mechanistic diversity and reveals differences in chaperone requirement of erad,J.Biol.Chem.,278(38):35903-35913.
[24] Waterham H.R.,Digan M.E.,Koutz P.J.,Lair S.V.,and Cregg J.M.,1997,Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regμLation and use of its promoter,Gene(Amsterdam),186(1):33-44.
[25] Xue Y.Y.,Zhang Y.P.,and Jia H.H.,2012,Advances in the synthesis and application of galactooligosacharides,Fajiao Keji Tongxun(Bulletin of Fermentation Science and Technology),41(4):50-52.(薛雅莺,张翼鹏,贾慧慧,2012,低聚半乳糖的制备和应用进展,发酵科技通讯,41(4):50-52.) [26] Zhang X.W.,Ye Y.Y.,Liu X.X.,Lu L.L.,and Lin Y.,2013,Application of Pichia pastoris original consti tutive strong promoter gcw14 in candidn antarctic lipase b yeast surface display,Shengwu Jishu Tongbao(Biotechnology Bulletin),(4):129-135.(张轩薇,叶燕锐,刘晓肖,鲁柳柳,林影,2013,毕赤酵母新启动子gcw14在细胞表面展示calb中的应用,生物技术通报,(4):129-135.) [27] Zhu T.C.,Guo M.J.,Sun C.,Qian J.C.,Zhuang Y.P.,Chu J.,and Zhang S.L.,2009,A systematical investigation on the genetic stability of mμLti-copypichia,Biotechnol.Lett.,31(5):679-684.
[28] Zhu T.C.,Sun H.B.,Li P.F.,Xue Y.F.,Li Y.,and Ma Y.H.,2014,Constitutive expression of alkaline beta-mannanase in recombinant Pichia pastoris,Process Biochem.,49(12):2025-2029.
[29] Zittermann A.,Bock P.,Drummer C.,Scheld K.,Heer M.,and Stehle P.,2000,Lactose does not enhance calcium bioavailability in lactose-tolerant,healthy adults,Am.J.Clin.Nutr.,71(4):931-936.
-
期刊类型引用(3)
1. 刘亚琼,武振江,周琪琪,陈敖华,王莲哲. 蛙皮抗菌肽Brevinin-2SSb的真核表达及抑菌活性分析. 河南城建学院学报. 2025(02): 107-113 . 百度学术
2. 侯超,张申平,马跃龙. 特异性乳糖酶的开发研究进展. 生物加工过程. 2024(01): 81-88 . 百度学术
3. 李晨霞,向芷璇,李敬,江正强,闫巧娟,马俊文. 米曲霉β-半乳糖苷酶的定向进化、高效表达及应用. 食品与生物技术学报. 2022(10): 49-57 . 百度学术
其他类型引用(2)
计量
- 文章访问数: 3
- HTML全文浏览量: 0
- PDF下载量: 0
- 被引次数: 5