A Comparative Analysis of the Liver Transcriptomes of the Tadpoles of the Microhyla fissipes and Fejervarya multistriata with the Same Domain Distribution
-
摘要: 饰纹姬蛙(Microhyla fissipes)蝌蚪和泽陆蛙(Fejervarya multistriata)蝌蚪是南方常见的无尾两栖类,两者同域分布,但在体型和发育分期上差异较大。为深度挖掘两者的肝脏功能基因和物种共存的内在机制,本研究通过Illumina Hiseq平台对发育到38期的饰纹姬蛙蝌蚪和泽陆蛙蝌蚪肝脏进行转录组测序。基因表达差异分析显示,泽陆蛙蝌蚪和饰纹姬蛙蝌蚪肝脏组织中存在3 202个差异基因。相较于饰纹姬蛙蝌蚪,泽陆蛙蝌蚪肝脏中1 635个Unigenes上调、1 567个下调。具体而言,与泽陆蛙蝌蚪相比,在饰纹姬蛙蝌蚪肝脏中编码抗氧化酶和热休克蛋白以及与热应激相关的基因表达均升高,推测两种蝌蚪可能通过热生态位分离,从而有效减轻或避免有限资源下的种间竞争。本研究为探讨同域分布的不同物种之间的共存机制提供重要的参考依据。Abstract: The tadpoles of Microhyla fissipes and Fejervarya multistriata are common anura in southern China. They are distributed in the same domain, but their size and developmental stages are quite different. In order to explore the functional differences and mechanisms of coexistence between the two species, the Illumina Hiseq was used to sequence the transcriptome of the liver of Microhyla fissipes and Fejervarya multistriata tadpole at stage 38. There were 3 202 differentially expressed genes in the liver of the two tadpoles, of which 1 635 Unigenes were up-regulated and 1 567 Unigenes were down-regulated in Fejervarya multistriata compared to Microhyla fissipes. The expression level of the genes encoding antioxidant enzymes, heat shock proteins and heat stress-related genes in the liver of the Microhyla fissipes was higher than that of the Fejervarya multistriata, suggested that there were different in the temperature tolerance and thermal tolerance ability between the two tadpoles, and they might effectively reduce or avoid the interspecies competition under limited resources through thermal site separation. This research provides an important reference basis for exploring the coexistence mechanism of different species distributed in the same region.
-
Keywords:
- Microhyla fissipes /
- Fejervarya multistriata /
- Tadpole /
- Liver /
- Transcriptome
-
-
[1] Alford R.A.,and Richards S.J.,1999,Global amphibian declines:a problem in applied ecology,Ann.Rev.Ecol.Syst.,30(1):133-165.
[2] Anttila K.,Dhillon R.S.,Boulding E.G.,Farrell A.P.,Glebe B.D.,Elliott J.A.K.,Wolters W.R.,and Schulte P.M.,2013,Variation in temperature tolerance among families of Atlantic salmon (Salmo salar) is associated with hypoxia tolerance,ventricle size and myoglobin level,J.Exp.Biol.,216(Pt 7):1183-1190.
[3] Carey C.,and Bryant C.J.,1995,Possible interrelations among environmental toxicants,amphibian development,and decline of amphibian populations,Environ.Health Perspect.,103(Suppl 4):13-17.
[4] Gosner K.L.,1960,A simplified table for staging anuran embryos and larvae with notes on identification,Herpetologica,16(3):183-190.
[5] Grabherr M.G.,Haas B.J.,Yassour M.,Levin J.Z.,Thompson D.A.,Amit I.,Adiconis X.,Fan L.,Raychowdhury R.,Zeng Q.D.,Chen Z.H.,Mauceli E.,Hacohen N.,Gnirke A.,Rhind N.,di Palma F.,Birren B.W.,Nusbaum C.,Lindblad-Toh K.,Friedman N.,and Regev A.,2011,Full-length transcriptome assembly from RNA-Seq data without a reference genome,Nat.Biotechnol.,29(7):644-652.
[6] Hardin G.,1960,The competitive exclusion principle,Science,131(3409):1292-1297.
[7] Hochachka P.W.,1998,Mechanism and evolution of hypoxia-tolerance in humans,J.Exp.Biol.,201(Pt 8):1243-1254.
[8] Jayasundara N.,Gardner L.D.,and Block B.A.,2013,Effects of temperature acclimation on Pacific bluefin tuna (Thunnus orientalis) cardiac transcriptome,Am.J.Physiol.Regul.Integr.Comp.Physiol.,305(9):R1010-R1020.
[9] Jiang J.P.,Xie F.,Zang C.X.,Cai L.,Li C.,Wang B.,Li J.T.,Wang J.,Hu J.H.,Wang Y.,and Liu J.Y.,2016,Assessing the threat status of amphibians in China,Biodiversity Science,24(5):588-597.(江建平,谢锋,臧春鑫,蔡蕾,李成,王斌,李家堂,王杰,胡军华,王燕,刘炯宇,2016,中国两栖动物受威胁现状评估,生物多样性,24(5):588-597.) [10] Joseph P.,2017,Transcriptomics in toxicology,Food Chem.Toxicol.,109(Pt1):650-662.
[11] Kanehisa M.,Araki M.,Goto S.,Hattori M.,Hirakawa M.,Itoh M.,Katayama T.,Kawashima S.,Okuda S.,Tokimatsu T.,and Yamanishi Y.,2008,KEGG for linking genomes to life and the environment,Nucleic Acids Res.,36:480-484.
[12] Kang Y.J.,2020,Proteomics and metabolomics analysis of rainbow trout (Oncorhynchus mykiss) liver responses to heat stress,Dissertation for Ph.D.,Gansu Agricultural University,Supervisor:Liu Z.,pp.5-17.(康玉军,2020,虹鳟肝脏响应高温胁迫的蛋白质组学与代谢组学研究,博士学位论文,甘肃农业大学,导师:刘哲,pp.5-17.) [13] Kaspar J.W.,Niture S.K.,and Jaiswal A.K.,2009,Nrf2:INrf2 (Keap1) signaling in oxidative stress,Free Radic.Biol.Med.,47(9):1304-1309.
[14] Landman M.,Schoeman D.S.,and Kerley G.I.H.,2013,Shift in black Rhinoceros diet in the presence of elephant:evidence for competition?PLoS ONE,8(7):e69771.
[15] Li B.,and Dewey C.N.,2011,RSEM:accurate transcript quantification from RNA-Seq data with or without a reference genome,BMC Bioinformatics,12(1):323.
[16] Lu S.S.,2013,A study on the structure and function of hemoglobin in two Phrynocephalus lizards from different altitudes,Thesis for M.S.,Lanzhou University,Supervisor:Chen Q.,pp.29-31.(鲁松松,2013,不同海拔两种沙蜥血红蛋白结构和功能的研究,硕士学位论文,兰州大学,导师:陈强,pp.29-31.) [17] Pirow R.,Bäumer C.,and Paul R.J.,2001,Benefits of haemoglobin in the cladoceran crustacean Daphnia magna,J.Exp.Biol.,204(Pt 20):3425-3441.
[18] Robinson M.D.,McCarthy D.J.,and Smyth G.K.,2010,edgeR:a bioconductor package for differential expression analysis of digital gene expression data,Bioinformatics,26(1):139-140.
[19] Shi L.Q.,Zhao L.H.,Ma X.H.,and Ma X.M.,2012,Selected body temperature and thermal tolerance of tadpoles of two frog species (Fejervarya limnocharis and Microhyla ornata) acclimated under different thermal conditions,Acta Ecologica Sinica,32(2):465-471.(施林强,赵丽华,马小浩,马小梅,2012,泽陆蛙和饰纹姬蛙蝌蚪不同热驯化下选择体温和热耐受性,生态学报,32(2):465-471.) [20] Shi Q.,Sun N.L.,Kou H.H.,Wang H.Y.,and Zhao H.F.,2018,Chronic effects of mercury on Bufo gargarizans larvae:thyroid disruption,liver damage,oxidative stress and lipid metabolism disorder,Ecotoxicol.Environ.Saf.,164:500-509.
[21] Sies H.,1997,Physiological society symposium:impaired endothlial and smooth muscle cell function in oxidative stress-oxidative stress:oxidants and antioxidants,Exp.Physiol.,82(2):291-295.
[22] Stuart S.N.,Chanson J.S.,Cox N.A.,Young B.E.,Rodrigues A.S.L.,Fischman D.L.,and Waller R.W.,2004,Status and trends of amphibian declines and extinctinos worldwide,Science,306(5702):1783-1786.
[23] Wang C.P.,Li X.Q.,and Li Q.S.,2020,An analysis on feeding habits of Fejervarya multistriata and Microhyla fissipes in the middle segment of Wuliang Mountain,Journal of Southwest Forestry University (Natural Sciences),40(1):98-103.(王春萍,李秀清,李奇生,2020,无量山中段泽陆蛙和饰纹姬蛙食性分析,西南林业大学学报(自然科学版),40(1):98-103.) [24] Wang H.,2018,Transcriptomic analysis of dybowski′s frogs exposed to Ranavirus and tests of anti-Ranavirus effectiveness of two traditional Chinese medicine,Dissertation for Ph.D.,Northeast Forestry University,Supervisor:Wang X.L.,pp.37-39.(汪环,2018,蛙病毒胁迫下东北林蛙转录组分析及两种中药制剂作用研究,博士学位论文,东北林业大学,导师:王晓龙,pp.37-39.) [25] Wei J.,2016,Reproductive traits and larvae antipredation behavior of two sympatric species (Microhyla ornata and Fejevarya limnocharis),Thesis for M.S.,Hangzhou Normal University,Supervisor:Lin Z.H.,pp.32-33.(魏洁,2016,同域分布饰纹姬蛙和泽陆蛙的繁殖特征及其蝌蚪反捕食行为,硕士学位论文,杭州师范大学,导师:林植华,pp.32-33.) [26] Yan J.,Li S.,and Li S.L.,2014,The role of the liver in sepsis,Int.Rev.Immunol.,33(6):498-510.
[27] Yan X.J.,Qi P.Z.,Guo B.Y.,and Li J.J.,2021,The advances in research of Nrf2 pathway involved in oxidative stress regulation in aguatic animals,Oceanologia et Limnologia Sinica,52(4):799-812.(严小军,祁鹏志,郭宝英,李继姬,2021,Nrf2参与水生动物氧化应激调控的研究进展,海洋与湖沼,52(4):799-812.) [28] Young M.D.,Wakefield M.J.,Smyth G.K.,and Oshlack A.,2010,Gene ontology analysis for RNA-seq:accounting for selection bias,Genome Biol.,11(2):R14.
[29] Zhang S.F.,Dong H.B.,Wang Q.,and Zhang J.S.,2021,Effects of temperature on growth,oxygen consumption and thermal tolerance of juvenile humpback grouper Cromileptes altivelis,Journal of Dalian Ocean University,36(1):74-79.(张善发,董宏标,王茜,张家松,2021,温度对驼背鲈幼鱼生长、耗氧和热耐受性的影响,大连海洋大学学报,36(1):74-79.)
计量
- 文章访问数: 1
- HTML全文浏览量: 0
- PDF下载量: 1