高级检索+

高山特有植物丽江棱子芹的叶绿体基因组结构和系统发育关系

张婕妤, 俞树良, 李志敏, 孙文光

张婕妤, 俞树良, 李志敏, 孙文光. 高山特有植物丽江棱子芹的叶绿体基因组结构和系统发育关系[J]. 基因组学与应用生物学, 2023, 42(9): 903-918. DOI: 10.13417/j.gab.042.000903
引用本文: 张婕妤, 俞树良, 李志敏, 孙文光. 高山特有植物丽江棱子芹的叶绿体基因组结构和系统发育关系[J]. 基因组学与应用生物学, 2023, 42(9): 903-918. DOI: 10.13417/j.gab.042.000903
ZHANG Jie-yu, YU Shu-liang, LI Zhi-min, SUN Wen-guang. Chloroplast Genome Structure and Phylogenetic Relationships in the Alpine Endemic Plant Pleurospermum foetens[J]. Genomics and Applied Biology, 2023, 42(9): 903-918. DOI: 10.13417/j.gab.042.000903
Citation: ZHANG Jie-yu, YU Shu-liang, LI Zhi-min, SUN Wen-guang. Chloroplast Genome Structure and Phylogenetic Relationships in the Alpine Endemic Plant Pleurospermum foetens[J]. Genomics and Applied Biology, 2023, 42(9): 903-918. DOI: 10.13417/j.gab.042.000903

高山特有植物丽江棱子芹的叶绿体基因组结构和系统发育关系

基金项目: 

第二次青藏高原综合科学考察研究(2019QZKK05020)

国家自然科学基金项目(31960046)

国家基金-云南省联合基金重点项目(U1802232)

云南省科技厅基础研究专项——青年项目(202201AU070057)共同资助

详细信息
    通讯作者:

    李志敏,lizhimin_vip@163.com

    孙文光,sunwenguang@vip.163.com

  • 中图分类号: Q943

Chloroplast Genome Structure and Phylogenetic Relationships in the Alpine Endemic Plant Pleurospermum foetens

  • 摘要: 本文基于高通量技术对丽江棱子芹(Pleurospermum foetens)的叶绿体基因组进行测序,并对丽江棱子芹的叶绿体基因组结构特征及其系统进化关系进行了分析。结果表明,丽江棱子芹的叶绿体基因组具备典型的四分体结构,基因组全长155 057 bp,包含87个蛋白编码基因、 8个核糖体RNA基因和39个转运RNA基因。生物信息学分析结果显示,叶绿体基因组共编码26 075个密码子,编码异亮氨酸Ile的ATT数量最多,除终止子外编码半胱氨酸Cys的TGC数量最少,相对同义密码子使用度最高的为UUA,最少的是AGC; SSR位点共预测到了34个,包括单核苷酸重复序列27个,双核苷酸重复序列4个,以及复合型重复序列3个。丽江棱子芹与棱子芹属(Pleurospermum)其他植物相比较,其基因组大小、基因类型及GC含量相近。利用IQ-TREE软件构建最大似然树,结果表明丽江棱子芹与线裂棱子芹(P.linearilobum)的亲缘关系最近,棱子芹属为多系类群。该研究丰富了丽江棱子芹叶绿体基因组的遗传信息,为丽江棱子芹的分子标记的开发、遗传多样性和谱系地理研究等奠定了理论基础,同时也为构建伞形科(Apiaceae)植物的系统进化提供了支持。
    Abstract: This study sequenced the chloroplast genome of Pleurospermum foetens by high throughput technique, and analyzed its structural characteristics and phylogenetic relationship. The results showed that the chloroplast genome was a typical tetrad structure. The total length of the genome is 155 057 bp, with 87 protein coding genes, 8 ribosomal RNA genes, and 39 transfer RNA genes. Bioinformatics analysis revealed that the chloroplast genome encodes a total of 26 075 codons, with the highest number of ATT coding for Ile and the lowest number of TGC coding for Cys, apart from the terminator. The highest relative synonymous codon usage was UUA, and the lowest was AGC. Additionally, 34 SSR loci were identified, including 27 single nucleotide repeats sequences, 4 double nucleotide repeats sequences, and 3 complex repeats sequences. The genome size, gene type and GC content of P. foetens were similar with other Pleurospermum species. A maximum likelihood tree was constructed using the IQ-TREE software, the results showed that P.foetens is closely related to P.linearilobum and the Pleurospermum branch is a paraphyletic group. This study enriched the genetic information of chloroplast genome of P. foetens, and laid a theoretical foundation for the development of molecular markers, genetic diversity and phylogeography of P. foetens. It also provides support for the systematic evolution of Apiaceae plants.
  • [1] 陈志祥,姚雪莹,Stephen R.Downie,等,2019.直刺变豆菜叶绿体全基因组及其特征.生物多样性,27(4):366-372.[CHEN Z X,YAO X Y,DOWNIE S R,et al.,2019.Assembling and analysis of Sanicula orthacantha chloroplast genome.Biodiversity Science,27(4):366-372.]
    [2] 梁菲菲,2010.密码子偏性的影响因素及研究意义.畜牧与饲料科学,31(1):118-119.[LIANG F F,2010.Influencing factors of codon bias and its research significance.Animal Husbandry and Feed Science,31(1):118-119.]
    [3] 梅抗抗,周力,唐开宇,等,2016.油橄榄分子标记及转录组学研究进展.分子植物育种,14(12):3469-3478.[MEI K K,ZHOU L,TANG K Y,et al.,2016.Application of molecular markers and transcriptomics research progress in olive.Molecular Plant Breeding,14(12):3469-3478.]
    [4] 苏丹丹,刘玉萍,刘涛,等,2022.苦马豆叶绿体基因组结构及其特征分析.植物研究,42(3):446-454.[SU D D,LIU Y P,LIU T,et al.,2022.Structure of chloroplast genome and its characteristics of Sphaerophysa salsula.Bulletin of Botanical Research,42(3):446-454.]
    [5] 孙文远,孙文光,李志敏,2020.横断山高山冰缘带两种伞形科特有植物的核型分析.云南师范大学学报(自然科学版),40(2):59-64.[SUN W Y,SUN W G,LI Z M,2020.Karyomorphological study of two endemic plants(Apiaceae:Pleurospermum) from the alpine subnival belt in Hengduan Mountains.Journal of Yunnan Normal University(Natural Sciences Edition),40(2):59-64.]
    [6] 唐萍,2015.蝶形花科植物叶绿体基因组研究进展.南方农业学报,46(1):21-25.[TANG P,2015.Advances in chloroplast genome of widely diversified Papillionaceae.Journal of Southern Agriculture,46(1):21-25.]
    [7] 汪小全,洪德元,1997.植物分子系统学近五年的研究进展概况.植物分类学报,35(5):465-480.[WANG X Q,HONG D Y,1997.Progress in molecular systematics of plants in recent five years.Acta Phytotaxonomica Sinica,35(5):465-480.]
    [8] 王会朋,马祥光,郜鹏,等,2014.中国棱子芹属16种1变种的果实特征及其分类学意义.西北植物学报,34(4):711-719.[WANG H P,MA X G,GAO P,et al.,2014.Fruit anatomical features of sixteen species and one variety of Pleurospermum(Apiaceae)in China and their taxonomic significance.Acta Botanica Boreali-Occidentalia Sinica,34(4):711-719.]
    [9] 韦瑾,2020.中国棱子芹属及其近缘类群的系统学研究:兼论伞形科药用资源调研,硕士学位论文.昆明:昆明医科大学.[WEI J,2020.A phylogenetic study of Pleurospermum Hoffm.and related Genera in China:investigation of medicinal plants in Apiaceae,Thesis for M.S.Kunming:Kunming Medical University.]
    [10] 余涛,蒲芬,管芹,等,2022.南欧大戟叶绿体基因组特征及其系统发育分析.分子植物育种,20(6):1828-1837.[YU T,PU F,GUAN Q,et al.,2022.Chloroplast genome of Euphorbia peplus L.characteristic and phylogenetic analysis.Molecular Plant Breeding,20(6):1828-1837.]
    [11] 张勇,刘启新,王利松,等,2013.伞形科棱子芹属花粉形态特征及其演化意义.植物资源与环境学报,22(4):29-37.[ZHANG Y,LIU Q X,WANG L S,et al.,2013.Pollen morphological characteristics of Pleurospermum Hoffm.(Apiaceae) and its evolution significance.Journal of Plant Resources and Environment,22(4):29-37.]
    [12] 赵耀,刘汉梅,顾勇,等,2008.玉米waxy基因密码子偏好性分析.玉米科学,16(2):16-21.[ZHAO Y,LIU H M,GU Y,et al.,2008.Analysis of characteristic of codon usage in waxy gene of Zea mays.Journal of Maize Sciences,16(2):16-21.]
    [13] 郑倩,童一涵,孔庆博,等,2022.毛籽红山茶叶绿体基因组特征及其系统发育分析.四川农业大学学报,40(4):574-582.[ZHENG Q,TONG Y H,KONG Q B,et al.,2022.Characterization of complete chloroplast genome and phylogenetic analysis of Camellia trichosperma Chang.Journal of Sichuan Agricultural University,40(4):574-582.]
    [14]

    AMIRYOUSEFI A,HYVÖNEN J,POCZAI P,2018.IRscope:an online program to visualize the junction sites of chloroplast genomes.Bioinform.(Oxf.Engl.),34(17):3030-3031.

    [15]

    BAYLY M J,RIGAULT P,SPOKEVICIUS A,et al.,2013.Chloroplast genome analysis of Australian eucalypts - Eucalyptus,Corymbia,Angophora,Allosyncarpia and Stockwellia (Myrtaceae).Mol.Phylogenet.Evol.,69(3):704-716.

    [16]

    BENSON G,1999.Tandem repeats finder:a program to analyze DNA sequences.Nucleic Acids Res,27(2):573-580.

    [17]

    CAI Z Q,GUISINGER M,KIM H G,et al.,2008.Extensive reorganization of the plastid genome of Trifolium subterraneum (Fabaceae) is associated with numerous repeated sequences and novel DNA insertions.J.Mol.Evol.,67(6):696-704.

    [18]

    CBOL Plant Working Group,2009.A DNA barcode for land plants.Proc.Natl.Acad.Sci.USA,106(31):12794-12797.

    [19]

    CHAW S M,WU C S,SUDIANTO E,2018.Evolution of gymnosperm plastid genomes.Adv.Bot.Res.85:195-222.

    [20]

    DONG W P,XU C,LI C H,et al.,2015.ycf1,the most promising plastid DNA barcode of land plants.Sci.Rep.,5:8348.

    [21]

    GANDHI S G,AWASTHI P,BEDI Y S,2010.Analysis of SSR dynamics in chloroplast genomes of Brassicaceae family.Bioinformation,5(1):16-20.

    [22]

    GUISINGER M M,KUEHL J V,BOORE J L,et al.,2011.Extreme reconfiguration of plastid genomes in the angiosperm family Geraniaceae:rearrangements,repeats,and codon usage.Mol.Biol.Evol.,28(1):583-600.

    [23]

    GUO M J,WEI J,LIU Z W,et al.,2020.The complete chloroplast genome and phylogenetic analysis of Pleurospermum amabile Craib & W.W.Smith.Mitochondrial DNA B,5(3):2966-2968.

    [24]

    HE K,JIANG X L,2014.Sky Islands of southwest China.Ⅰ:an overview of phylogeographic patterns.Chin.Sci.Bull.,59(7):585-597.

    [25]

    HERSHBERG R,PETROV D A,2008.Selection on codon bias.Annu.Rev.Genet.,42:287-299.

    [26]

    JANSEN R K,RAUBESON L A,BOORE J L,et al.,2005.Methods for obtaining and analyzing whole chloroplast genome sequences.Meth.Enzymol.,395:348-384.

    [27]

    JIN J J,YU W B,YANG J B,et al.,2020.GetOrganelle:a fast and versatile toolkit for accurate de novo assembly of organelle genomes.Genome Biol.,21(1):1-31.

    [28]

    KEARSE M,MOIR R,WILSON A,et al.,2012.Geneious Basic:an integrated and extendable desktop software platform for the organization and analysis of sequence data.Bioinform.(Oxf.Engl.),28(12):1647-1649.

    [29]

    KURTZ S,CHOUDHURI J V,OHLEBUSCH E,et al.,2001.REPuter:the manifold applications of repeat analysis on a genomic scale.Nucleic Acids Res.,29(22):4633-4642.

    [30]

    LIANG C L,WANG L,LEI J,et al.,2019.A comparative analysis of the chloroplast genomes of four Salvia medicinal plants.Engineering,5(5):907-915.

    [31]

    LITT M,LUTY J A,1989.A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene.Am.J.Hum.Genet.,44(3):397-401.

    [32]

    LOHSE M,DRECHSEL O,BOCK R,2007.OrganellarGenomeDRAW (OGDRAW):a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes.Curr.Genet.,52(5-6):267-274.

    [33]

    MAYOR C,BRUDNO M,SCHWARTZ J R,et al.,2000.VISTA:visualizing global DNA sequence alignments of arbitrary length.Bioinform.(Oxf.Engl.),16(11):1046-1047.

    [34]

    NGUYEN L T,SCHMIDT H A,VON HAESELER A,et al.,2015.IQ-TREE:a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies.Mol.Biol.Evol.,32(1):268-274.

    [35]

    PALMER J D,1985.Comparative organization of chloroplast genomes.Annu.Rev.Genet.,19:325-354.

    [36]

    PALMER J D,THOMPSON W F,1982.Chloroplast DNA rearrangements are more frequent when a large inverted repeat sequence is lost.Cell,29(2):537-550.

    [37]

    PEDEN J F,1999.Analysis of codon usage,Dissertation for Ph.D.Nottingham:University of Nottingham.

    [38]

    SASKI C,LEE S B,DANIELL H,et al.,2005.Complete chloroplast genome sequence of Glycine max and comparative analyses with other Legume genomes.Plant Mol.Biol.,59(2):309-322.

    [39]

    SHE M L,PU F D,PAN Z H,et al.,2005.Apiaceae (Umbelliferae)//Wu Z Y,Hong D Y,Raven P H,et al.,Flora of China.Beijing & St.Louis:Science Press & Missouri Botanical Garden Press:14-45.

    [40]

    SHI L C,CHEN H M,JIANG M,et al.,2019.CPGAVAS2,an integrated plastome sequence annotator and analyzer.Nucleic Acids Res.,47(W1):W65-W73.

    [41]

    THIEL T,MICHALEK W,VARSHNEY R,et al.,2003.Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.).Theor.Appl.Genet.,106(3):411-422.

    [42]

    WOLFE K H,LI W H,SHARP P M,1987.Rates of nucleotide substitution vary greatly among plant mitochondrial,chloroplast,and nuclear DNAs.Proc.Natl.Acad.Sci.USA,84(24):9054-9058.

    [43]

    ZHAO Y B,YIN J L,GUO H Y,et al.,2015.The complete chloroplast genome provides insight into the evolution and polymorphism of Panax ginseng.Front.Plant Sci.,5:696.

计量
  • 文章访问数:  1
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 刊出日期:  2023-09-24

目录

    /

    返回文章
    返回