Comparative Transcriptome Analysis of Representative Germplasm of Saccharum and Its Closely Related Genera
-
摘要: 甘蔗近缘种斑茅(Tripidium arundinaceum)、甘蔗属内野生种割手密(Saccharum spontaneum)和大茎野生种(Saccharum robustum)具有茎部强壮、耐旱、耐涝、耐霜和抗病性等对现代甘蔗品种改良具有重要价值的性状。本研究通过比较甘蔗属及其近缘属四个代表性种质,包括一个甘蔗属近缘种质(斑茅)、两个甘蔗属野生种(割手密、大茎野生种)和一个甘蔗属驯化种(热带种)的转录组,以探讨它们在转录层面的差异。研究发现,甘蔗近缘种斑茅与甘蔗属野生种割手密(BM vs Y83)、甘蔗属内的两个野生种割手密与大茎野生种(Y83 vs N57)以及甘蔗属内的野生种割手密和驯化种热带种(N57 vs NJ)之间的差异表达基因主要涉及光合作用、次级代谢和信号转导等,这可能导致甘蔗属及其近缘属物种间在光合能力、抗生物和非生物胁迫能力以及营养利用方面存在差异。割手密在氮代谢表现出较斑茅和大茎野生种更强的潜力,表明其在氮素利用上可能更具优势。此外,割手密的特异表达基因涉及光感受器、昼夜节律时钟和开花途径,这可能与其开花特性相关。本研究还鉴定了甘蔗属及其近缘属、甘蔗属内野生种和驯化种之间的4 325个直系同源基因,这些基因的正选择分析结果表明割手密可能在自然选择下逐渐改变基因表达模式以适应环境,而热带种从大茎野生种驯化后的分化和适应可能与植物激素信号转导的改变相关。Abstract: Tripidium arundinaceum, a close relative of sugarcane, and Saccharum spontaneum and Saccharum robustum, wild species within sugarcane, exhibit valuable traits for improvement of modern sugarcane cultivar, such as robust stems, drought, flood, and frost tolerance, and disease resistance. In this study, we compared the transcriptomes of representative germplasm from four sugarcane and closely related species, including a close relative of sugarcane(T. arundinaceum), two wild species within the Saccharum genus(S. spontaneum and S. robustum), and a domesticated sugarcane(S. officinarum), to investigate their transcriptomic differences. The research revealed that differentially expressed genes, between the sugarcane relative T. Tripidium arundinaceum and the wild species S. spontaneum of Saccharum genus(BM vs Y83), between two wild species S. spontaneum and S. robustum within the Saccharum genus(Y83 vs N57), and between wild species S. robustum and domesticated species S. officinarum within the Saccharum genus(N57 vs NJ), primarily involved functions related to photosynthesis, secondary metabolism, and signal transduction, which likely led to variations in their photosynthetic capacity, resistance to biotic and abiotic stresses, and nutrient utilization. S. spontaneum exhibited greater potential in nitrogen metabolism compared to T. arundinaceum and S. robustum, suggesting its potential advantages in nitrogen utilization. Furthermore, species-specific expressed genes in S. spontaneum were associated with photoreceptors, circadian rhythm clocks, and flowering pathways, indicating its unique flowering feature. The study also identified 4 325 orthologous genes among sugarcane, its close relatives, wild species, and domesticated varieties within the Saccharum genus, and positive selection analysis of these genes indicated that S. spontaneum gradually altered its gene expression patterns under natural selection to adapt to its environment, while the differentiation and adaptation of S. officinarum during the domestication process from S. robustum were likely related to the change of plant hormone signal transduction.
-
-
[1] 冯梦凡,汤震,黄有总,等,2022.甘蔗净光合速率及其影响因素的初步分析.分子植物育种,(2023-09-07)[2022-07-28]. https://kns.cnki.net/kcms/detail/46.1068.S.20220727.1715.010.html" target="_blank"> https://kns.cnki.net/kcms/detail/46.1068.S.20220727.1715.010.html.[FENG M F,TANG Z,HUANG Y Z,et al.,2022.Preliminary analysis of net photosynthetic rate and its affecting factors of sugarcane.Molecular Plant Breeding,(2023-09-07)[2022-07-28]. https://kns.cnki.net/kcms/detail/46.1068.S.20220727.1715.010.html" target="_blank"> https://kns.cnki.net/kcms/detail/46.1068.S.20220727.1715.010.html.] [2] 肖芙荣,曹哲群,徐荣,等,2018.斑茅野生种抗旱性鉴定.西南农业学报,31(8):1611-1616.[XIAO F R,CAO Z Q,XU R,et al.,2018.Identification of drought resistance of several wild species of Erianthus arundinaceum.Southwest China Journal of Agricultural Sciences,31(8):1611-1616.] [3] AGATI G,TATTINI M,2010.Multiple functional roles of flavonoids in photoprotection.New Phytol.,186(4):786-793.
[4] ALARMELU S,PAZHANY A S ,JAYABOSE C,2018.Genetic improvement and development of genetic stocks in sugarcane through backcross breeding,J.Sugarcane Res.,8(1):36-42.
[5] BAR-EVEN A,2018.Daring metabolic designs for enhanced plant carbon fixation.Plant Sci.,273:71-83.
[6] BAR-EVEN A,NOOR E,LEWIS N E,et al.,2010.Design and analysis of synthetic carbon fixation pathways.Proc.Natl.Acad.Sci.USA,107(19):8889-8894.
[7] BETTI M,BAUWE H,BUSCH F A,et al.,2016.Manipulating photorespiration to increase plant productivity:recent advances and perspectives for crop improvement.J.Exp.Bot.,67(10):2977-2988.
[8] BLAKE L E,ROUX J,HERNANDO-HERRAEZ I,et al.,2020.A comparison of gene expression and DNA methylation patterns across tissues and species.Genome Res.,30(2):250-262.
[9] BODENHOFER U,BONATESTA E,HOREJŠ-KAINRATH C,et al.,2015.msa:an R package for multiple sequence alignment.Bioinformatics,31(24):3997-3999.
[10] BRAUTIGAM C A,SMITH B S,MA Z Q,et al.,2004.Structure of the photolyase-like domain of cryptochrome 1 from Arabidopsis thaliana.Proc.Natl.Acad.Sci.USA,101(33):12142-12147.
[11] BRICKER T M,FRANKEL L K,2011.Auxiliary functions of the PsbO,PsbP and PsbQ proteins of higher plant Photosystem Ⅱ:a critical analysis.J.Photochem.Photobiol.B,104(1-2):165-178.
[12] BRIGIDA A B S,ROJAS C A,GRATIVOL C,et al.,2016.Sugarcane transcriptome analysis in response to infection caused by Acidovorax avenae subsp.avenae.PLoS ONE,11(12):e0166473.
[13] CHANDRAN K,NISHA M,GIREESAN P P,2020.Characterization of progenies from polycrosses of S.robustum clones f.sanguineum.Sugar Tech,22(3):379-388.
[14] CHEN N,ZHANG H,ZANG E,et al.,2022.Adaptation insights from comparative transcriptome analysis of two Opisthopappus species in the Taihang mountains.BMC Genomics,23(1):466.
[15] CHEN S F,ZHOU Y Q,CHEN Y R,et al.,2018.fastp:an ultra-fast all-in-one FASTQ preprocessor.Bioinformatics,34(17):i884-i890.
[16] CROFT B,BHUIYAN S,MAGAREY R,et al.,2015.New sources of resistance to major diseases from wild relatives of sugarcane.Proc Aust Soc Sugar Cane Technol.,37:218-226.
[17] CUONG D M,HA T W,PARK C H,et al.,2019.Effects of LED lights on expression of genes involved in phenylpropanoid biosynthesis and accumulation of phenylpropanoids in wheat sprout.Agronomy,9(6):307.
[18] CURSI D E,HOFFMANN H P,BARBOSA G V S,et al.,2022.History and current status of sugarcane breeding,germplasm development and molecular genetics in Brazil.Sugar Tech,24(1):112-133.
[19] DUCAT D C,SILVER P A,2012.Improving carbon fixation pathways.Curr.Opin.Chem.Biol.,16(3-4):337-344.
[20] DUDAREVA N,KLEMPIEN A,MUHLEMANN J K,et al.,2013.Biosynthesis,function and metabolic engineering of plant volatile organic compounds.New Phytol.,198(1):16-32.
[21] DURAI A A,GOVINDARAJ P,PAZHANY A S,2014.Flowering behaviour of sugarcane genotypes from different agro climatic zones of India.Sugar Tech,16(2):157-163.
[22] EDGAR R C,2004.MUSCLE:multiple sequence alignment with high accuracy and high throughput.Nucleic Acids Res.,32(5):1792-1797.
[23] EMMS D M,KELLY S,2019.OrthoFinder:phylogenetic orthology inference for comparative genomics.Genome Biol.,20(1):238.
[24] EVANGELISTELLA C,VALENTINI A,LUDOVISI R,et al.,2017.De novo assembly,functional annotation,and analysis of the giant reed (Arundo donax L.) leaf transcriptome provide tools for the development of a biofuel feedstock.Biotechnol.Biofuels,10(1):138.
[25] FATMA M,KHAN M I R,MASOOD A,et al.,2013.Coordinate changes in assimilatory sulfate reduction are correlated to salt tolerance:involvement of phytohormones.Annu.Res.Rev.Biol.,3:267-295.
[26] FOULADVAND M,EBRAHIMI A,RAHAEI M,et al.,2022.Identification of pathways and genes with differential expression in sugarcane after cold stress,through RNA-seq analysis.Env.Stresses Crop Sci.,15(2):541-550.
[27] FU Y H,WEI J J,PAN Y B,et al.,2019.Comparative analysis reveals changes in transcriptomes of sugarcane upon infection by Leifsoniaxyli subsp.xyli.J.Phytopathol.,167(11-12):633-644.
[28] HAAS B J,PAPANICOLAOU A,YASSOUR M,et al.,2013.De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis.Nat.Protoc.,8(8):1494-1512.
[29] HOSSAIN M A,LEE Y,CHO J I,et al.,2010.The bZIP transcription factor OsABF1 is an ABA responsive element binding factor that enhances abiotic stress signaling in rice.Plant Mol.Biol.,72(4-5):557-566.
[30] IFUFU K,YAMAMOTO Y,ONO T A,et al.,2005.PsbP protein,but not PsbQ protein,is essential for the regulation and stabilization of photosystem Ⅱ in higher plants.Plant Physiol.,139(3):1175-1184.
[31] IMAIZUMI T,TRAN H G,SWARTZ T E,et al.,2003.FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis.Nature,426(6964):302-306.
[32] JONES J D G,DANGL J L,2006.The plant immune system.Nature,444(7117):323-329.
[33] KATOH K,STANDLEY D M,2013.MAFFT multiple sequence alignment software version 7:improvements in performance and usability.Mol.Biol.Evol.,30(4):772-780.
[34] KIM D,LANGMEAD B,SALZBERG S L,2015.HISAT:a fast spliced aligner with low memory requirements.Nat.Methods,12(4):357-360.
[35] KUMAR S,ZAVALIEV R,WU Q L,et al.,2022.Structural basis of NPR1 in activating plant immunity.Nature,605(7910):561-566.
[36] LANGMEAD B,SALZBERG S L,2012.Fast gapped-read alignment with Bowtie 2.Nat.Methods,9(4):357-359.
[37] LI J J,YE C L,CHANG C F,2020.Comparative transcriptomics analysis revealing flower trichome development during flower development in two Lonicera japonica Thunb.cultivars using RNA-seq.BMC Plant Biol.,20(1):341.
[38] LI W Z,GODZIK A,2006.Cd-hit:a fast program for clustering and comparing large sets of protein or nucleotide sequences.Bioinformatics,22(13):1658-1659.
[39] LU X D,ZHOU C M,XU P B,et al.,2015.Red-light-dependent interaction of phyB with SPA1 promotes COP1-SPA1 dissociation and photomorphogenic development in Arabidopsis.Mol.Plant,8(3):467-478.
[40] MANECHINI J R V,DA SILVA SANTOS P H,ROMANEL E,et al.,2021.Transcriptomic analysis of changes in gene expression during flowering induction in sugarcane under controlled photoperiodic conditions.Front.Plant Sci.,12:635784.
[41] MATSUBARA K,OGISO-TANAKA E,HORI K,et al.,2012.Natural variation in Hd17,a homolog of Arabidopsis ELF3 that is involved in rice photoperiodic flowering.Plant Cell Physiol.,53(4):709-716.
[42] MURAKAMI M,TAGO Y,YAMASHINO T,et al.,2007.Comparative overviews of clock-associated genes of Arabidopsis thaliana and Oryza sativa.Plant Cell Physiol.,48(1):110-121.
[43] NAKASHIMA K,YAMAGUCHI-SHINOZAKI K,2013.ABA signaling in stress-response and seed development.Plant Cell Rep.,32(7):959-970.
[44] PAIDIPATI K K,BANIK A,SHAH B,et al.,2022.Forecasting of sugarcane productivity estimation in India:a comparative study with advanced non-parametric regression models.J.Algebr.Stat.,13(2):760-778.
[45] PATRO R,DUGGAL G,LOVE M I,et al.,2017.Salmon provides fast and bias-aware quantification of transcript expression.Nat.Methods,14(4):417-419.
[46] PEREIRA-SANTANA A,ALVARADO-ROBLEDO E J,ZAMORA-BRISEÑO J A,et al.,2017.Transcriptional profiling of sugarcane leaves and roots under progressive osmotic stress reveals a regulated coordination of gene expression in a spatiotemporal manner.PLoS ONE,12(12):e0189271.
[47] POURCEL L,ROUTABOUL J M,CHEYNIER V,et al.,2007.Flavonoid oxidation in plants:from biochemical properties to physiological functions.Trends Plant Sci.,12(1):29-36.
[48] RATHINAM M,MISHRA P,VASUDEVAN M,et al.,2019.Comparative transcriptome analysis of pigeonpea,Cajanus cajan (L.) and one of its wild relatives Cajanus platycarpus (Benth.) Maesen.PLoS ONE,14(7):e0218731.
[49] ROBINSON M D,MCCARTHY D J,SMYTH G K,2010.edgeR:a bioconductor package for differential expression analysis of digital gene expression data.Bioinformatics,26(1):139-140.
[50] SAKAIGAICHI T,TERAJIMA Y,SUGIMOTO A,et al.,2007.Comparison of root distribution and root growth direction in two sugarcane hybrids with contrasting tolerance to water stress.Proc.Int.Soc.Sugar Cane Technol.,26:754-758.
[51] SANGHERA G S,MALHOTRA P,SINGH H,et al.,2019.Climate change impact in sugarcane agriculture and mitigation strategies//Malik C P,Trivedi P C.Harnessing plant biotechnology and physiology to stimulate agricultural growth.New Delhi,India:OM Publication:99-115.
[52] SCORTECCI K C,CRESTE S,CALSA T,et al.,2012.Challenges,opportunities and recent advances in sugarcane breeding.Plant Breeding,1:267-296.
[53] TAKARAGAWA H,OKAMOTO K,TERAJIMA Y,et al.,2022.Evaluation of root distribution and nitrate leaching in sugarcane,Erianthus,and their intergeneric hybrid at new planting.Plant Prod.Sci.,25(3):298-310.
[54] VAN LOON L C,REP M,PIETERSE C M J,2006.Significance of inducible defense-related proteins in infected plants.Annu.Rev.Phytopathol.,44:135-162.
[55] WANG D P,ZHANG Y B,ZHANG Z,et al.,2010.KaKs_Calculator 2.0:a toolkit incorporating gamma-series methods and sliding window strategies.Genom.Proteom.Bioinform.,8(1):77-80.
[56] WANG Y N,LIU C,LI K X,et al.,2007.Arabidopsis EIN2 modulates stress response through abscisic acid response pathway.Plant Mol.Biol.,64(6):633-644.
[57] WANG Y R,ZHANG J S,WANG R,et al.,2021.Unveiling sugarcane defense response to Mythimna separata herbivory by a combination of transcriptome and metabolic analyses.Pest Manag.Sci.,77(10):4799-4809.
[58] WU T D,WATANABE C K,2005.GMAP:a genomic mapping and alignment program for mRNA and EST sequences.Bioinformatics,21(9):1859-1875.
[59] YAN H F,ZHOU H W,LUO H M,et al.,2021.Characterization of full-length transcriptome in Saccharum officinarum and molecular insights into tiller development.BMC Plant Biol.,21(1):228.
[60] YI X P,HARGETT S R,FRANKEL L K,et al.,2006.The PsbQ protein is required in Arabidopsis for photosystem Ⅱ assembly/stability and photoautotrophy under low light conditions.J.Biol.Chem.,281(36):26260-26267.
[61] YI X P,HARGETT S R,LIU H J,et al.,2007.The PsbP protein is required for photosystem Ⅱ complex assembly/stability and photoautotrophy in Arabidopsis thaliana.J.Biol.Chem.,282(34):24833-24841.
[62] YI X P,MCCHARGUE M,LABORDE S,et al.,2005.The manganese-stabilizing protein is required for photosystem Ⅱ assembly/stability and photoautotrophy in higher plants.J.Biol.Chem.,280(16):16170-16174.
[63] ZHANG Z,XIAO J F,WU J Y,et al.,2012.ParaAT:a parallel tool for constructing multiple protein-coding DNA alignments.Biochem.Biophys.Res.Commun.,419(4):779-781.
计量
- 文章访问数: 1
- HTML全文浏览量: 0
- PDF下载量: 0