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Abstract To explore the critical time points of type II alveolar epithelial cells (AT 1) in response to hypoxia in Sus scrofa, in this
study, ATII of Tibetan pigs and Landrace pigs were cultured under normal oxygen (21% O,) and hypooxygen (2% O,) levels. The
three-dimensional comformational characteristics of AT I, the change in the gene expression levels of EPASI (endothelial PAS domain
protein 1) and HBB(hemoglobin beta locus), and the proleferation rate of AT I[ were observed and analyzed AT Il at different time
points (0~ 144 h). The key change points of Tibetan pigs’ response to hypoxic environment were investigated and the apoptosis rate was
analyzed by flow cytometry. Results showed that AT I of Tibetan pigs with purity of more than 90% was isolated successfully. AT Il of
Tibetan pigs cultured with low oxygen showed obvious fibrosis. The expression level of EPASI in Tibetan pigs and Landrace pigs
changed gently at 0~36 h, and significantly at 48 h (P<0. 05). Compared to Landrace pigs, the expression level of EPASI gene in AT
Il of Tibetan pigs was lower in hypoxia environment, and the change trend continued until 96 h. Compared to Landrace pigs, the rela-

tive expression of HBB gene AT Il in the two groups firstly increased and then decreased with the change of time, and ATII in Tibetan
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pigs was higher under hypoxia environment. At low oxygen levers of 24 h t0120 h, the cell proleferation rate of Tibetan pigs AT Il cul-

tured with 2% O, was significantly higher than that of other groups, and at 120 hours of cultivation, it was higher than other groups.

The late apoptosis rate of AT Il in 48 h hypoxia group (Tibetan pigs AT Il cultured under 2% O,, Landrace pigs AT II cultured under

2% 0,) was higher than that in normal oxygen group (Tibetan pigs AT Il cultured under 21% O,, Landrace pigs AT II cultured under

21% 0,). The results showed that 48 h was the key time point for hypoxia response of Tibetan pigs ATII .
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SRR T K — RGN, AR5 T H 2 ]
M (Jeong et al., 2018) , FRUFZEHEL . LHLUHIAN i B
155 (Gan et al., 2019; He et al., 2019), &K,
AR AR L0 ™ B 52 W) 7 6 g Ji A\ S A LA 5
VIR AR, 2l BRI, T LAY 3 s i) ix
P PR B R4 B S AL T M, JBOHS (Sus scro-
o) TR WA FEA TR BT A 4 v DA G
%M ( Yang et al., 2022a; Yang et al., 2021) . filiifd
VER SRS I, G b 1 20 T e B SRR s
HWNEIM R, v b s 200 5 22y TR o | g
MM (type I alveolar cells, AT 1) A1 II Y flivfe I 52 41
H@(type Il alveolar cells, ATII )*@JJJ‘ZO REHE T,
AT I #3005 Jm ARERHE S5 AT I A 7 i 2 v 7%
Wy ST A A 0 ) A2 A5 AR w5k g, [R] ek
G 225y 2 AR TR AT I DAZERR A S AnAa i,
AFEAT AL BT Bt i i A2 i 73 4k AT T ( Cardo-
soand Whitsett, 2008) . Kt , VE il b Rz g+ 40
JEL, AT IL X e AR S P85 T il T e AR A 2B G 3
(Matalon, 1991; Hoffman and Ingenito, 2012) ,

e SRR SR 25 Sl W ) O PR R it e v 4 T
HHEMO, BB B UL 5, IRl REA T
WL IR E B SR Y, AT S o A S R S
TR UM AT I XG40 0 25 9 G B i) e,
PO RS, O A fili B & ik, i 960 1) B SE S Hfi
G B AE (Yang et al., 2021), BRI RS )
FA) I 2T 85 1 (hemoglobin ) 17357 21 20 Jifd 1fin £1 85 (4 ¢
F£ ( mean corpuscular hemoglobin concentration,
MCHC) ¥ % 2% & TR $08 (K A ) 19 (FH = O
45, 2020) . BRI FE RS RNA-seq 2343511, 8
TR SR S A7 5 3 % mT RE TR B — 1> 52 2R 1 9 08K
BE, FEBRESIE N KR, DAREARIT 5 £ i KUK

SR AAAF BRI Z —, TN E R
SN RS T E oS R R (A 2y 7 T SR R R A3 )
AR Z —, Al J03O AT 4 20 i A= 4 IH 1 (fi-

Tibetan pigs; Hypoxia adaptation; Lung; Type Il alveolar epithelial cells

broblast growth factor, FGF)%5— R FEH Feik i,
AT RS2 it DAY 1 200 L 0~ i JUTL 200 JHL ) 3 L O T
34k DA R R 2 B B B AR A R, IR
U 3h Bk =5 & ( Sajib et al., 2018; Tirpe et al.,
2019) . PIEZ PAS 25443841 7% 8 1 (endothelial PAS
domain protein 1, EPAS1), X kR iFESR RN T
( hypoxia-inducible factor 2o, HIF-2a) , WA 3 [E] 75
Brranfiorik oy AT, S e 8 AR A 20 il 6 475
(¥ =, 2018), I 4L % H B ( hemoglobin beta
locus, HBB) & [ J& 8t & %5 5 I F 1 ( hypoxia-
inducible factor 1, HIF-1) @4 s pg e g RL R B4R
i} HBB JEPAFA i Fl, n] I P20
PAGRIE I BRI SR A a4 (3K, 2016) .

AT, T EE AT KA (2% 0,) #ifh
BRI R B R AW BITE R A (21% 0,) H
IR (2% 0,) 254 T 35 2 U A F 8 19 AT L,
PRGAREEAE T NS R I E 3 AT 1B 2 2 6E & HAE
TRAEFREE T A3 AL T iy A2 ek 5, DU E
TERAEIA B T DG B A2 Ak I 1] 53 25, A DAAH 27 K
V-4 7 JCAE AT L o R ARSI 38 1) A 2 AL A BF 5
BEE HL Al

1 &R

1.1 RERETEFEE ATINESETWL

Ay e OB I U AT TARA)S , W A7 06
PERERRREL (0, PSR A KRS, 45 EW, AT
B, SRR as, Bl AERLE
N, HATAMA 0, Biil4r e AT 1T 4l 51
1£90% LA (1A, | 1B), 7R E B T g
TSR EUR A T B 25 U A s AT B,
48 h B AT I EEA: K R, SN LY, i
JH 2 B s AHAR TR R P RO, (R IR AT T
SR AL, MERRIE (K 1C, K 1D),
6 d i, MRERT IR AT T B LA K, A0 £ 4k Ak o
B, S KRTIE, A il &, B
POLEEZEHZ/NE 1E, K 1F),
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B 1 B AT MRS
(A) MBI EE L B E TR AT ; (B) WEBBREBLABLEERKAE ATI; (C)ATIESR(21% 0,)EFR
48 h; (D)ATH{EE (2% O,)¥55 48 h; (E)ATHE R (21% 0,)#EF 6 d; (F)ATI{EE (2% O,)iEF 6d
Figure 1 Morphology of AT Il in Tibetan pigs

( A) Alkaline phosphatase staining of AT I in Tibetan pig; (B) Alkaline phosphatase staining of AT II in
Landrace pig; (C) AT culture for 48 h under normal (21% O,) condition; (D) ATI culture for 48 h

under hypoxia (2% O,) condition; (E) ATII culture for 6 d under normal (21% O,) condition;
(F) ATI culture for 6 d under hypoxia (2% O,) condition

1.2 {KEIRETEF ATI A EPASI #1 HBB 9%
RTT{E

EPAST 7 AT 1T v i) 32 55 1 Bl 2 15 1] 19 4%
BT, 0~36 h I, EPAST JER il ik 781k
BNV, 75 48 h Bf kAT BEWALL, EPAST %
R ) ek i 7RI N LK (A0 AT I i fe i,
TEAREIREE T LUBE 0 AT I FR A%, s fbitah—
BIIEZEZ 96 h (K 2A),

HBB JEHAE AT I i) 2% 3 o Bifi 45 B ) 719 2
fEER T EmIEEMRM B, 0~36 h B} HBB

BRI EILFEAZ; FE48 h B KA T
WEWAAL, W R B HBB X Y 26 35 & A K
A TR AT I b e i, 6% B 57 45
TLUKEABEN AT F15&A%; 60 h J5 HBB 3 H 7E
4 Y R RS (B 2B) , KA 41 HBB
I RR IR A S T A4 0, HBB 3Kk
MR E L T UG AT e i, 78 % A
T UK AN AT b fe A%, 7640 [ i 25 55
T, HBB EHEME M R LB HREA®H TKA
W,
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2 {REXt AT # EPASI #1 HBB RiZE8%M
Figure 2 Effect of hypoxia on the expression levels of EPAS/ and HBB in AT Il

1.3 REIREITEIE AT 1 EEN M

K CCK-8 2 F o i 40 ffd iy 384 51 2%, 25 %
Won, 0~8 hBf, AT I (20 i 34 58 % JLF- J6 B
Ak 12~24 h B, BERV52; 24~48 h B, &2
RO A TR A, 48 ~ 64 h N, 40 f ¥ B R A
Foz; 68 h i, R EHFEMEHENE, 5

2% 0, BFTF KA ATIHIL, 21% 0, KT
EE AT, 21% O, $5 38 TR 4% AT IT 1
2% 0, B % T 0 AT I 77 3% R B85,
AR S T REFE 24~ 120 h B, 5% AT I i 40
O BE 5 FARE I s, HAERE 3% 120 h A2 T 4
fbZH iy (181 3) .

3 RETHEE AT I ISR MR B T a R
Figure 3 Change trend of proliferation rate in AT II of Tibetan pigs with time under hypoxia

1.4 {EE 48 h XI5%E AT L AT ER &M

PROEZH AT R B, 5 R R R AT
21% 0, ¥ 3%, KA ATII21% 0, ¥i5%) Mk, 1k
AL (EE AT2% O, ¥5g%, KM ATII2% O, #5
FAT TR MR 1% . R T | SR TRy

T, MHAE R RO EAR (R 1), 4 HZ A
FT R MRBNEHF R . 5% AT121% 0, $55%,
KA AT 21% O, 3557, A AT 2% O, H53%,
KM AT 2% 0, $53%, 15 i 40 M A0 HE )
52 M (K 4)(Yang et al., 2022b) .

x1 REFELETHEE ATIAFATE

Table 1 Apoptosis rate of AT II of Tibetan pigs under hypoxia and normal oxygen treatment

Gagil WA T3 /% FHHTR/% RIHTIR/% TEH 1 AR/ %
Groups Late apoptosis rate/% Early apoptosis rate/% Total rate of apoptosis/% Normal viable cell rate/%
KA 21% 0, 19.78 4.45 24.23 72.95
Landrace pig 21% 0,

KA 2% 0, 29.98 6. 89 36. 87 60. 68
Landrace pig 2% 0,

% 21% 0, 7.29 6.58 13. 87 84. 63

Tibetan pigs 21% 0,

W 2% 0, 15. 40 16. 50 31.90 66. 47

Tibetan pigs 2% O,
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Annexin-V-FITC Z&/RBEREE -V ARic B SRR DGR ; P1ERBUEAIE,

Annexin-V-FITC represents fluorescence isothiocyanate labeled with annexin V; PI represents propidium iodide.

B4 RENMESLETEE ATIHATER

Figure 4 Apoptosis of AT Il in Tibetan pigs was detected under hypoxia and normal oxygen treatment

2 Wit5H

0P I 2 R AR T ) S B S ok
RLUR | AW, SR A A H RN 2 S EUE A
5, &7 . DNA Akt s, i fid % 40 ML 98 12 ( Guo
et al., 2019; Schito and Rey, 2018) , X F KL %4
IR, AR 2 T AN I BE T R L AN A Y
PSS S E =R O ) N1 [ I = WV
(Hubbi and Semenza, 2015) ., AWFEFEW, KER
55 R HIF-20 7] B2 IO WLE (myocardin) 1)
ikt Pt 2P 8] e 5 40 M ) O JULAE 40
Ml (M e 25, 2021) , miR-21-5p AJ 5 AT II
e e 4 DE Y S PRI 5 b n 98 T (5K 28, 2017)
ZE ¥ 40 ( Rachycentron canadum ) W EARE I A7
28 d J&5, HARBEThRE v RERIMN S, B3| kil Rk
It H.H R G g 5L B XUR T (AR B 4,
2021) . FeHER/NEGE FRIE FCF-10 FEH AT ] AT
27 4e4l, FHAet R A | e A e it bk
YU A9 5235 ( Dredge et al., 2003) , SRR & A5
T S I 9 BB A A I 2T A | BH ZE
it AN PR I W 3B 25 B AE, ARV BT BB
S B B b R AR (AT D) PR Ty A
AT R, 5 A A, AR RS 37 05U
HAE AT DB 2 W 2F4E 4k, O HRHIR AR
RBE ) 0 i B AR 2 —

PMEZ PAST S H, AR B PR T 2
WAE(HIF-2a) ", AR RAEM I R ¥, &5
PRI T N B AR (Tian et al., 1997) , fIREAFMF
~ PHD( plant homeodomain ) TR, {f HIF-2«

B S A 5T P 5% i 3% ( oxygen-dependent degradtion,
ODD) [X fifi % R 5% 5 ¥2 Fk Ak 7K SF BEAK, 3 3k 310 4l
HIF-20 (Y5l R A B4 = . HIF-20 F HIF-1a
BT P HI A iy b 2A =ik 48% MAHMIYE, HAE
T R AR X AF AR — S 3R] AR A R 3
(Hanaoka et al., 2012; Schénenberger et al., 2015;
Yu etal., 2018), A7 2% # W 5% [ i 26 7% 22 15 9K
(800-1800-3300 m) J&Ff, #ill EPAST &K 4ifih X (1)
AR S mRNA N HE A FRE G, KM EPAST %
K2 5 RSB (S DS 45, 2020) . EPASI
mRNA 7E AT II 7 () AH XF 3 3K 5t bifi 4 B 8] 79 22 16
Wit , EPAST BEPRITEAR A IAEE T iy AT I rh
AR, AR LR 96 h, SEEA
HIR S 2 A AH [F] (Peng et al., 2017)

HBB Z5JEP 1%, vl R HIF-1 &2 )%
SEE IL-6, HBB AE 2 — i Hi 2L 1) i 405 I 1A
How i 2 0 R LA PN 67 53 48 s a9 2 Y =
A, X FE W EREE L U HBB %% S5 i 34 hn i %
L H, DARIEIMEAE R sm (5E =,
2018) . FEGRAAE Nk B T, Sl Wi A g i 21 8
PR e B ok 2l 38 I8 i ( Yang et al., 2021) . 38
1L O R HBB ik i, KITE B BRE
55 58, 75, 119 1137 [ &R LR B, 55 137
AP 2 R 2 e LA 2 R B 5 T IMLZL B LR O, 2R
7 (3K1E, 2016) , KU, HBB XA AR N I
LR AT VE AL, HBB WL 78 S5 5 i ik
AP 1M 21 2, 11 7K A e T 7 A G, AR5 4
T, AR T HBB TE5U% A G ATIH 3%
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AR TR EIAEE T, B AT HBB ik 2
B, 7O Wi JIE 2H 20 i RNA-seq 375 3 25 45
B, Ui HBB 1) LR &80 ATIIE B IR SR 555 11 4
Rz —, H 48 h N HASL A SR [R] A5

AT R G AT 2% 0, Hide . KA
¥ ATII2% 0, 553%) 19 AT IS FE R, Al REJR M
SR HE BRI o . AR T SRR SRR Y
PEIET, S — RIMGE SLidmia sh, Ifh 2
WHER—FIMS 50— 5, GERTFHTR
(Xu et al., 2019) , TEARBFFEH, KA L GBIE AT
2% 0, B35 . KA ATI2% 0, Bi5%) AT I 1Y%
WIAT A AT R BT RS TR A (R
WATII21% 0, ¥53: . KA AT 21% O, }53%)
[, FIRESE AT I XHIR AR A0AE B A Ik, K A
ATII2% O, ¥5FR4L I8 T & T % ATI2% 0,
BRIy, (HH T AR THROE AT 12% 0, R4
Hy, FUIEE AT 2% O, FiFR4H K 3% AT 2%
0, B4 374 RE - B IR RS

g5 Bk, TEAREEREE T RYsEUE AT 1LY EPASI
M HBB PRI 3RIA L | 858 3 Bl s ] 1) A8 4k T A2
1k, 48 h & HAR LAY SN H] A

3 #MR5AE

3.1 SRR

PERIBCH A 22 ke b B35 1 AR A AR
(R UM S — &, RIS O 251
R SRR E BT A A i IR vh Ae N LA ]
FLA BRI E 1 S50 sh Py 18 B AR 2R E T, IR &
H AL KA (LS . 2006-398)

3.2 EFERHA

DMEM ( dulbecco’s modified eagle medium ) 5 57
WM TG A s | B FBEIA A 22 [ Gibeo 2
5 T25 Ki g i B 58 [ RR T A w5 ok e R 1 ik
My A FiE s RAEVMEARARA T RT-qPCR
P& 3 R SR e A ) TR A BRA F 5 Arical
T ML AOE A SEE BD BEIT AR A PR 5 AR
O AL B 28 E Sigma 2R A F PEGENE B
LI H H A Olympus ARl 3 A LBk B 7246 W B
PRI KB (P D) ARA A,

3.3 ATIHWISNE, SURERE

P48 5 5 B IE 2 19% ALY PBS WYk 3 1K,
B 1 mm® B/, kS AE 85 3 L Y R 2840

e, A 6 mL R T 37 °C T 4L 35 min, 1L 5E
BRI R AR 5 42 55 37 3 (90% DMEM FEA 5%
FRHEFN 10% M3 ) Ze 1Ak, IR 100 H 40 i i
. JEWE 1 000 r/min B0 5 min, H 3 mL
HBSS 2% i i vk 3 Y, 1 000 r/min Z5.0> 5 min,
AR IR AP A 0. 05% #% 19G AT 5 mL,
TR FRAE h s 3 h (RS CO,) , 3 LI
W PBS WEH 2 ¥k, DMEM 4% & 10 min, 3
2 DMEM, JHIMA B E MW, & T aks
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B0 5 min, KA EAEE SRR, 16 6 FLAR
AL, e R B I il e ) U B AT
PP, B TE R DA T SR AT I L],
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U A U AT LA BB SY R 2 4, BIE
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0,) FIMERE (93% N,. 5% CO,.2% 0,) &M T
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3.5 SCHE=E PCR #&ill HIF-1 #1 HBB E R X%

RGP A SR, iR 0, 12,24 36,
48 .60, 72, 84,96, 108, 120, 132 144 h J5 kA
wn, WORERS e L BR &5 S A b 55 72 W, 1T PBS BE 4 A
20K, BFLIA 1 mL Trizol & & $2 B 4% 41 40 i A
RNA, Jf- il 2 v B, 4 BR300 & Ul B 15 &
cDNA, 5HFH| 03 2, #7500 & & PCR KW,
I 2794 X B A 3 ek AT AW a2 &, PCR R
NARFF AT . 95 C HAEYE 1 min, 95 CAEPE S s,
58 CIiRk 15 s, 72 CHEMH 30 s, F: 40 PMFIR,

*2 SEMEEPCR3IMFT!

Table 2 Primer used for real time quantitative PCR

B KR/ C
FN SIS (5-3") -
Annealing
Genes Primer sequences (5'-3")
temperature/ °C
HIF-2a F; 5'-TTGAAGATGAAATGAAGGCACAGA-3’ 60

5
: 5'-ATGGTCGCACGGATGAGTAAA-3'

HBB  F. 5'-CTCCTGGGCAACGTGATAGT-3’ 60
R: 5'-GGTCAGAGGAAAAAGGGCTCCTCCT-3’

B-actin F; 5'-CAGTCGGTTGGATGGAGCAT-3’ 60
: 5'-AGGCAGGGACTTCCTGTAAC-3’

3.6 CCK-8 EfillZapafFEiEsE
4 M Ak BT S, FE RO SRR A
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CCK-8 A 10 wL/fL (96 fL#R), S FMh IR E
1 h, JHESEFRC 2 B A0 M AE 450 nm ARG
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( propidium iodide, PI)#EEHEF 15 min, 1 h FIRH
D2 A ASCAG: T 3 A I 488 nm AT D G
530 nm A MYFEGIREE
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GraphPad Prism 8. 0 i 474:E , £di L Mean +
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