高级检索+

聚硅氧烷改性水性环氧树脂/聚氨酯复合聚合物的制备及性能研究

Preparation and Properties of Waterborne EP/PU Composites Modified with Polysiloxane

  • 摘要: 利用阴离子型聚硅氧烷改性萜烯基环氧树脂多元醇(ASTP)水分散体与亲水改性己二异氰酸酯(HDI)三聚体复合制备了聚硅氧烷(HTPDMS),并将其用于改性双组分水性环氧树脂(EP)/聚氨酯(PU)复合聚合物。分析表明:ASTP水分散体与多异氰酸酯在70℃加热5 h可完全交联成膜;HTPDMS分子链段接入树脂基体中,在固化交联的过程中硅氧烷链段向聚合物表面富集,当HTPDMS的用量为多元醇质量的10%时,硅氧烷在聚合物表面达到饱和,降低了聚合物表面能,提高了表面接触角,改性后表面接触角为95°,疏水性增强。由于硅氧烷链段热稳定性好,添加HTPDMS提高了复合聚合物的热稳定性。然而硅氧烷链段玻璃化转变温度(Tg)低,且易与聚氨酯基体树脂形成微相分离,添加HTPDMS降低了复合聚合物Tg和储能模量。

     

    Abstract: Waterborne epoxy resin(EP)/polyurethane(PU) composite polymers were prepared from anionic polysiloxane modifying terpene-base epoxy resin based polyol dispersions(ASTP) and hydrophilically modifying hexamethylene diisocyanate(D80). The silicon concentration on the uppermost surfaces of the composite polymers was higher than that at the polymer-substrate interfaces. This result implied that the hydroxypropyl terminated polydimethy-siloxane(HTPDMS) segments enriched at the polymer-air interface and formed the hydrophobic film surface. When the amount of the HTPDMS reached 10% by weight based on the weight of ASTP, siloxane content on the uppermost surfaces was saturated and the contact angle increased to about 95°. Due to the good thermal stability of siloxane segment, the introdution of HTPDMS to the polyurethane improved the thermal stability of composite. However, due to the low glass transition temperature of siloxane segment, the attachment of HTPDMS to the polyurethane decreased the glass transition temperature of the composite, and the formation of microphase separation between HTPDMS segment and the resin matrix also led to a decrease of glass transition temperatures of the composite polymers.

     

/

返回文章
返回