高级检索+

石墨烯改性椰壳活性炭复合材料的制备及其电化学性能研究

Preparation of Graphene Modified Coconut Shell Activated Carbon Composite and Its Electrochemical Performance

  • 摘要: 以椰壳为原料,水蒸气活化法制备了椰壳活性炭(AC),并以乙醇和水作为溶剂,采用水热法将AC与石墨烯(GR)按质量比90:0、90:5、90:54、90:90和54:90复合,将制得的复合材料(GAC1~GAC5)作为电极应用于超级电容器。通过氮气吸脱附、X射线衍射(XRD)、扫描电镜(SEM)方法表征了活性炭的孔结构和表面形貌;采用循环伏安(CV)、恒电流充放电(GCD)方法分析比较不同复合比例下超级电容器电极材料的性能。实验结果表明:在炭化温度800℃,活化温度900℃及活化时间1.5 h的条件下制备的椰壳活性炭比表面积为2 482 m2/g,其孔径主要分布在2~4 nm,孔容可达1.33 cm3/g,在6 mol/L KOH电解液中比电容为85 F/g,石墨烯改性的复合材料GAC-5作为电极材料具有优异的电化学性能,在电流密度1 A/g时比电容可达186 F/g。

     

    Abstract: Steam activated carbon (AC) was prepared by using coconut shell as raw material, followed by using hydrothermal method and ethanol and water as solvent to prepare capacitance super-capacitor (GAC1-GAC5) with the mass ratios of AC and graphene(GR) 90:0, 90:5, 90:54, 90:90 and 54:90. By nitrogen adsorption-desorption, XRD and SEM methods, the pore structure and surface morphology of activated carbon were characterized. Comparison of different composite capacitance ratio super-capacitor electrode material was analyzed by cyclic voltammetry(CV), galvanostatic charge-discharge(GCD) method. The experimental results showed that the specific surface area of coconut shell activated carbon was 2 482 m2/g, and its pore diameter was mainly distributed at 2-4 nm, with the pore volume as 1.33 cm3/g, specific capacitance was 85 F/g in 6 mol/L KOH electrolyte. Under the conditions of carbonization temperature of 800℃, activation temperature of 900℃ and activation time of 1.5 h, the addition of the graphite improved the composite material capacitance up to 186 F/g.

     

/

返回文章
返回