Abstract:
The porous SiO
2@C composites were fabricated via a one-step
in situ doping approach using biomass waste larch sawdust as raw material and SiO
2 as pore structure regulator. The effects of different carbonization temperature and SiO
2 as the template on pore structure and adsorption property of composites were investigated.The SEM, TEM, nitrogen adsorption/desorption, Raman spectroscopy, X-ray diffraction (XRD), Fourier infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) were adopted to characterize the composite material. Meanwhile, the adsorption behavior of the composites was studied by using ethyl violet dye as the model. The results showed that the morphologies of SiO
2@C composites obtained from carbonization between 700 to 900℃ changed from cross-linked spherical to network-like structure, and the porous structures changed from disorder to order.Moreover, the large specific surface areas increased from 538 m
2/g to 780 m
2/g of the SiO
2@C composites.Benefitting from high specific surface area and ordered pore structure, the adsorption value of SiO
2@C-900 was as high as 378 mg/g for ethyl violet dye; the removal rate of ethyl violet dye was 99% at the optimal adsorption condition of temperature 55℃ and pH 7, and the removal rate was still above 97% after repeated 5 times, indicating that these composites had good stability. The adsorption isothermal was in line with the Langmuir adsorption isothermal model, and the adsorption kinetics was in line with the second-order kinetic model, namely, which was mainly chemical adsorption.