高级检索+

纳米石墨片/竹炭复合材料的制备、表征及其电化学性能研究

Preparation, Characterization and Electrochemical Properties of Graphite Nanosheets/Bamboo Charcoal Composites

  • 摘要: 以竹炭、鳞片石墨为原料,基于机械力效应,通过高能球磨的剥离和粉碎,然后高温炭化,制备出具有优良电化学性能的纳米石墨片/竹炭(GN/BC)复合材料;同时在相同条件下,以不添加鳞片石墨制备的高温多孔竹炭(PBC)为对照样品。利用X射线衍射(XRD)、拉曼光谱(Raman)、扫描电子显微镜(SEM)、比表面积与孔隙分布分析仪表征了材料的表面形貌和结构,并利用三电极体系测试了其电化学性能。研究结果表明:较高结晶度鳞片石墨的加入可以提高复合材料的结晶度,高能球磨可以使石墨片破碎成纳米尺寸,并嵌入竹炭内部;制备的GN/BC复合材料的比表面积为863.47 m2/g,总孔容为0.56 cm3/g、微孔孔容为0.26 cm3/g,平均孔径为2.58 nm;在1 A/g的电流密度下,该复合材料具有280.97 F/g的高质量比电容,同时还具有良好的倍率性能。

     

    Abstract: Based on mechanical force effect, graphite nanosheets/bamboo charcoal(GN/BC) composites with excellent electrochemical performance were prepared by high-energy ball milling and pulverization, and high-temperature carbonization using bamboo charcoal and flake graphite as raw materials. Meanwhile, the high-temperature porous bamboo charcoal(PBC) prepared without flake graphite was used as the control sample under the same conditions. The surface morphology and structure of the material were characterized by X-ray diffraction(XRD), Raman spectroscopy(Raman), scanning electron microscope(SEM) and specific surface area and pore distribution analyzer. The electrochemical performance of the product was tested by a three-electrode system. The results showed that the addition of flake graphite with higher crystallinity could improve the crystallinity of the composites. High-energy ball milling could break the graphite flakes into nanostructures and embed them in the bamboo charcoal. The specific surface area of the prepared GN/BC was 863.47 m2/g, the total pore volume was 0.56 cm3/g, the micropore volume was 0.26 cm3/g, and the average pore diameter was 2.58 nm. At a current density of 1A/g, the composite material had a high specific capacitance of 280.97 F/g and good rate performance.

     

/

返回文章
返回