高级检索+

高浓度木质纤维素原料酶解过程分析

Analysis of Enzymatic Hydrolysis Process of High-solid Lignocellulose Materials

  • 摘要: 以碱处理后甘蔗渣为研究对象,考察了不同物料混匀方式、添加3种低共熔溶剂(DES)、分批补料的进料方式、添加半纤维酶对高浓度底物酶解效率的影响。结果显示:磁力(机械)搅拌能够加快酶解速率,但对提高酶解效率作用较小;低浓度DES的添加对酶解的影响几乎可以忽略;分批补料底物初始质量浓度为150 g/L,分别在12 h、36 h补料100 g/L,使底物总质量浓度达到350 g/L,酶解96 h后,总糖质量浓度达到162.7 g/L,纤维素和半纤维素酶解率均为51%左右;在分批补料基础上,添加1 000 IU/g的半纤维素酶,利用复合酶进行酶解96 h,总糖质量浓度达到218.9 g/L,纤维素和半纤维素酶解率分别为72%和63%,较未添加半纤维素酶时提高了40%和22%。

     

    Abstract: Focusing on alkali-treated bagasse, the effects of solid-liquid mixing methods, addition of three kinds of deep eutectic solvents(DES), feed method of fed-batch feeding, and the addition of xylanase on the enzymatic hydrolysis efficiency at high solid loading were investigated. The results showed that magnetic stirring could accelerate enzymatic hydrolysis speed, but had little effect on the efficiency of enzymatic hydrolysis. Negligible effect on enzymatic hydrolysis was observed by addition of low-concentration DES. A fed-batch with initial substrate loading of 150 g/L was fed at 12 and 36 h, respectively, which resulted in a total solid loading of 350 g/L for enzymatic hydrolysis. After enzymatic hydrolysis for 96 h, the total sugar concentration reached 162.7 g/L with the conversion rates of approximately 51% of both cellulose and hemicellulose. On the basis of fed-batch feeding, 1 000 IU/g hemicellulase was added, and the enzyme cocktail was used for enzymatic hydrolysis for 96 h. The total sugar concentration reached 218.9 g/L, and the conversion rate of cellulose and hemicellulose were 72% and 63%, respectively, which were 40% and 22% higher than those without the addition of hemicellulase.

     

/

返回文章
返回