Abstract:
Tannic acid(TA) doped polypyrrole(PPy)/cellulose(XWS)(TA/PPy/XWS) supercapacitors electrodes materials were prepared
via in situ polymerization on the surface of cellulose, in which TA was used as the electroactive dopant. The effects of each component in the electrodes and the cellulose content on the electrochemical performance of the electrodes were investigated. The results showed that TA could provide pseudocapacitance through reversible redox reaction, which could enhance the specific capacitance of the electrode material. The TA doped PPy particles were coated on the surface of the cellulose, which could expose more active sites to further improve the electrochemical performance of the electrodes. With the increasing cellulose content, the specific capacitance of the electrode increased at first and then decreased. The maximum specific capacitance of the prepared TA/PPy/XWS-30 electrode reached 340.7 F/g at a current density of 0.5 A/g. TA/PPy/XWS-30 was then coated on the filter paper by screen printing to assemble the flexible supercapacitor. The maximum specific capacitance, energy density and power density of the supercapacitor were 90.7 F/g, 8.1 Wh/kg and 705.8 W/kg, respectively. The capacitance retention rate was 73.8% after 5 000 charge-discharge cycles. Besides, the capacitance retention rate remains at 86.4% after 2 500 bending cycles at 180°, which exhibits excellent flexibility and charge-discharge cycling stability. The corresponding performance of the series and parallel connection and instance of lighting an electronic watch demonstrates that the supercapacitor has a good application prospect.