高级检索+

ATRP法制备纤维素-油脂-糠醛热塑性弹性体及性能表征

Preparation and Characterization of Cellulose-fattyacid-furfural Derived Thermoplastic Elastomer via ATRP

  • 摘要: 通过“从主链接枝”原子转移自由基聚合(ATRP)法,采用分步聚合策略,成功制备了一种乙基纤维素接枝嵌段共聚物乙基纤维素-g-甲基丙烯酸月桂酯-b-甲基丙烯酸四氢糠基酯(EC-g-P(LMA-b-THFMA))。对聚合物的热力学性能研究发现:共聚物中存在两个热转变,分别发生在-35 ℃和49~56 ℃时,表明该共聚物存在微相分离;机械性能分析表明该共聚物具有优异的热塑性弹性体行为,伸长率为89%~147%,拉伸强度为1.7~9.5 MPa。循环拉伸机械性能研究表明EC-g-P(LMA-b-THFMA200)的弹性恢复系数高达92%以上。乙基纤维素接枝共聚物的机械性能具有明显的增强作用,较线性聚合物P(LMA-b-THFMA)的机械强度提高了1.36倍。

     

    Abstract: The grafted block copolymers, ethyl cellulose-g-lauryl methacrylate-b-tetrahydrofurfuryl methacrylate(EC-g-P(LMA-b-THFMA)) was successfully prepared via "grafting from" atom transfer radical polymerization(ATRP) through two-step polymerization strategy. Thermal property analysis showed that this copolymer had two thermal transitions(-35 ℃ and 49-56 ℃), indicating of the presence of microphase separation in the copolymer. Mechanical property analysis showed that the copolymer had excellent thermoplastic elastomer behavior with the elongation of 89%-147% and tensile strength of 1.7-9.5 MPa. The cycilic tensile mechanical properties analysis indicated that the elastic recovery of EC-g-P(LMA-b-THFMA200) was more than 92%. Compared with the linear block polymer P(LMA-b-THFMA), it could be found that the introduction of cellulose significantly enhanced the mechanical properties of graft copolymer. The mechanical strength of graft copolymer was increased by 1.36 times while compared with that of P(LMA-b-THFMA).

     

/

返回文章
返回