高级检索+

云南切梢小蠹危害云南松监测模型与判定规则

Research of Damage Monitoring Models and Judgment Rules of Pinus yunnanensis with Tomicus yunnanensis

  • 摘要:
    目的 通过分析云南切梢小蠹危害下的云南松枝梢高光谱特征,建立其危害程度监测模型和判定规则。
    方法 使用便携式地面成像光谱仪采集云南切梢小蠹蛀梢期的云南松中、幼龄林枝梢光谱反射率数据,分析光谱特征并提取特征参数,以此构建云南松受云南切梢小蠹危害程度的监测模型和判定规则。
    结果 随危害程度加重,在绿波段(510~560 nm)和近红外波段(720~1 036 nm),光谱反射率逐渐降低;一阶微分曲线在红边(680~760 nm)的峰值向短波方向移动;云南切梢小蠹危害程度与光谱反射率及其一阶微分在509~539、549~564、595~677、687~692、702~807、838~875、891~1 031 nm显著相关;以高光谱特征参数SDrDy、(D-H)/(D+H)、SDnir、(SDnir-SDr)/(SDnir+SDr)构建的4个监测模型的实测值与预测值的线性拟合关系较好(R2>0.9),可准确估算云南切梢小蠹危害程度;根据4个监测模型建立的判定规则准确率高(≥ 80%),其中,多元线性回归模型y=-7.720x1+1.275x2+1.251x3-4.835x4+1.135x5+6.632的判定规则准确率最高(健康(< 1.589)、轻度受害1.589,2.465)、中度受害2.465,3.381)、重度受害(≥ 3.381)),达93.333%。
    结论 根据云南松高光谱特征参数,建立的监测模型和判定规则可有效监测云南切梢小蠹危害程度,研究结果可用于云南切梢小蠹危害发生发展的监测。

     

    Abstract:
    Objective By analyzing the hyperspectral features of Pinus yunnanensis in different damage levels and building monitoring models, to establish the damage monitoring model and judgment rules for integrated control of Tomicus yunnanensis.
    Method In shoot damage period of T. yunnanensis, the imaging hyperspectral data of young and middle-aged P. yunnanensis in study area were obtained by SOC710VP, and hyperspectral features were analyzed to extract hyperspectral features parameters to build damage levels detection models and judgment rules.
    Result With the aggravation of damage level of T. yunnanensis, the reflectance spectral curves of P. yunnanensis gradually declined at green bands (510-560 nm) and near-infrared bands (720-1 036 nm), and the peak values of spectral first derivative curves gradually decreased at red edge (680-760 nm). In 509-539, 549-564, 595-677, 687-692, 702-807, 838-875 nm, and 891-1 031 nm, the damage levels and reflectance and first derivative of P. yunnanensis needle were significantly correlated. Hyperspectral parameters SDr, Dy, (D-H)/(D+H), SDnir, and (SDnir-SDr)/(SDnir+SDr) were used to establish the monitoring models, the R2 of measured value and predicted value all reached 0.9. The accuracy of quantitative judgment rules based on 4 monitoring models were higher than 80%, the rules (Healthy (< 1.589), Slight damage1.589, 2.465), Moderate damage2.465, 3.381), Severe damage (≥ 3.381)) based on multivariable linear regression model y=-7.720x1+1.275x2+1.251x3-4.835x4+1.135x5+6.632, reached the highest precision (93.33%).
    Conclusion The monitoring models and judgment rules based on hyperspectral feature parameters can monitor the damage level of T. yunnanensis effectively.

     

/

返回文章
返回