Abstract:
Objective To provide a reliable basis for the accurate estimation and scale expansion of transpiration in medium and large diameter Eucalyptus plantations, the radial variation of sap flow and its effect on the estimation of whole tree transpiration were analyzed.
MethodsThe sap flow density at three sapwood depths (0-2 cm, 2-4 cm and 4-6 cm) of 10-year-old Eucalyptus urophylla × Eucalyptus grandis was monitored using the Granier-type thermal dissipation probe (TDP).
Result The results showed that the diurnal variation of sap flow density in each sapwood depth showed a single-peak pattern, and the sap flow density decreased with the increase of sapwood depth. Compared with the daily whole tree transpiration estimated based on sap flow density in three sapwood depths (Tr246), the daily transpiration when trade the sap flow density in 0-2 cm (Tr2), 2-4 cm (Tr4) and 4-6 cm (Tr6) sapwood depth as the whole tree sap flow density were overestimated by 92.9% and underestimated by 28.2% and 74.0%, respectively. The sap flow in 0-2 cm sapwood depth was more sensitive to environment compared with the other two depths and Tr2 had higher correlation with Tr246 (R2=0.964) compared with Tr4 and Tr6. As a result, the sap flow in 0-2 cm depth could be used to estimate whole tree transpiration of Eucalyptus when calibrated based on Tr246 (Tr246=0.522 Tr2).
Conclusion Eucalyptus shows obvious radial variation in sap flow density and there may lead to large errors in estimating whole tree transpiration when ignoring the radial variation of sap flow. The whole tree transpiration of Eucalyptus can be estimated easily and accurately using sap flow in 0-2 cm sapwood depth based on the calibrated function.