高级检索+

胡杨PeERF1基因提高转基因银腺杨84K耐旱性研究

Improvement of Drought Tolerance of PeERF1 Transgenic Populus alba × Populus glandulosa ‘84K’

  • 摘要:
    目的 分析PeERF1基因在胡杨干旱胁迫下的作用和PeERF1转基因植株抗旱的生理适应机制,为进一步研究该基因在木本植物中的抗旱调控机制奠定基础。
    方法 以胡杨为材料进行20% PEG6000模拟干旱(0、12和24 h)处理,对胡杨PeERF1基因进行时空表达模式分析。以非转基因(WT)、过表达35S::PeERF1转基因植株(PE)、显性抑制35S::PeERF1-SRDX转基因植株(SE)为试验材料,采用不同浓度PEG6000(对照组,20%)处理WT、PE和SE模拟干旱胁迫,并对其进行表达模式、生长性状和生理指标分析。
    结果 研究结果表明PeERF1基因在胡杨叶中的表达水平最高,其次是茎和根。在正常状态下,转基因植株和WT生长性状、叶绿素含量、过氧化氢酶(CAT)、丙二醛(MDA)和过氧化物酶(POD)含量变化不大。在20%PEG6000处理后,PE转基因植株比WT表现出更好的生长状态,PE转基因植株的叶绿素含量、CAT和POD含量高于WT,PE转基因植株MDA含量低于WT。而SE转基因植株则表现出相反的性状。
    结论 本研究结果初步显示干旱胁迫下,PeERF1基因转基因植株生长状态、叶绿素含量、过氧化氢酶、丙二醛和过氧化物酶等相关生理指标均发现显著变化。PeERF1对转基因杨树响应干旱起到了正向调控的作用。

     

    Abstract:
    Objective This study aimed to analyze the role of PeERF1 gene under drought stress in Populus euphratica, and evaluate the physiological adaptation mechanism of PeERF1 transgenic ‘ 84k’ (Populus alba × Populus glandulosa 84k’) to drought resistance for providing insights into further study of the drought resistance regulation mechanism of this gene in woody plants.
    MethodsThe drought (0, 12 and 24 h) treatment simulated with 20% PEG6000 was carried out on P. euphratica to analyze the temporal and spatial expression pattern of the PeERF1. Based on non-transgenic (WT), overexpressing 35S::PeERF1 transgenic plants (PE), and dominantly suppressed 35S::PeERF1-SRDX transgenic plants (SE), WT, PE and SE were treated with different concentrations of PEG-6000 (Control and 20%) to simulate drought stress, and analyzed for growth traits and physiological indicators.
    ResultsThe results showed that the expression level of PeERF1 gene was the highest in leaves of P. euphratica, followed by stems and roots. Under normal conditions, the transgenic plants and the WT showed little change in growth traits, chlorophyll content, catalase (CAT), malondialdehyde (MDA) and peroxide dismutase (POD) content. Under 20% PEG6000 treatment, the PE transgenic plants showed better growth status, and higher chlorophyll content, CAT and POD content than WT, and the PE transgenic plants showed lower MDA content than WT, while the SE transgenic plants showed opposite traits.
    Conclusion Under drought dress, significant changes are found in the growth status, chlorophyll content, catalase, malondialdehyde and peroxidase related physiological indicators of transgenic plants. PeERF1 plays a positive regulatory role on transgenic P. alba × P. glandulosa ‘84k’ in response to drought.

     

/

返回文章
返回