Abstract:
Objective By investigating the characteristics of soil organic carbon pools under different stand types, this study aims to provide a theoretical basis for the enhancement of soil carbon pools and ecological restoration in plain sandy areas.
Method Soil organic carbon (SOC), labile organic carbon fractions and soil enzyme activities were measured in five soil layers (0-20, 20-40, 40-60, 60-80 and 80-100 cm depth) for three 16-year-old stand types (poplar pure plantation, willow pure plantation and poplar-willow mixed plantation) and a nearby abandoned land (as control) at a typical plain sandy area of Feng County, Jiangsu Province. The carbon pool management index (CPMI) was estimated for the examined stands. The correlations between soil carbon pool characteristics and environmental factors therein were also analyzed.
Result (1) In general, the organic carbon content (SOC) and storage (SOCS) of the three forest types and the control soil layers ranged from 1.03 to 5.88 g·kg−1 and 3.53 to 17.55 t·hm−2, respectively. Among them, the SOC content increased by 45.2%-82.2% in the forested sites compared with the control site, and the SOCS in the 0-100 cm soil layer of pure poplar forest was 1.23, 1.24, and 1.83 times that of pure willow forest, mixed willow forest and the control, respectively. (2) Compared with the control, the soil labile organic carbon fractions, including easily oxidizable organic carbon, dissolved organic carbon and microbial biomass carbon, increased by 28.6%-48.0%, 6.8%-9.7% and 21.6%-33.4%, respectively. The CPMI was significantly higher than 100% for the three stand types (P<0.05). (3) Soil invertase activity and polyphenol oxidase activity were significantly affected by stand types, and the polyphenol oxidase activity of poplar-willow mixed plantation was significantly higher than that of poplar pure plantation and control (P<0.05) in 0-100 cm soil layer. (4) Pearson correlation analysis showed that characteristics of SOC pools were significantly affected by polyphenol oxidase and β-glucosidase activities(P<0.05), SOC, SOCS, EOC and CPMI were significantly affected by invertase, peroxidase activities. MBC was significantly affected by invertase activity. Redundancy analysis showed that soil carbon to nitrogen ratio and fine root biomass were the main factors in affecting the characteristics of SOC pools in the study area.
Conclusion Plantation in plain sandy soil area can improve soil organic carbon, active components and stability of organic carbon pool, and pure poplar forest has the best effect on improving soil organic carbon storage.