高级检索+

基于U-Net模型的多时相Sentinel-2A/B影像林分类型分类

Forest Type Classification Based on Multi-temporal Sentinel-2A/B Imagery Using U-Net Model

  • 摘要:
    目的 基于多时相Sentinel-2A/B影像,探究深度学习模型在森林植被上的分类效果。
    方法 以黑龙江省孟家岗林场为研究区,以多时相Sentinel-2A/B影像、数字高程模型(DEM)为数据源,通过各森林类别的JM距离,确定最佳单一时相。同时,构建多时相植被指数及红边指数特征(DVI、mNDVI、CIred-edge、NDre1)。采用支持向量机和优化的U-Net模型分别对单一时相 + DEM和单一时相 + DEM + 多时相植被指数两种方案进行分类实验。
    结果 (1)在单一时相 + DEM基础上,加入多时相植被指数后,U-Net模型精度为77.87%,比单一时相 + DEM精度高6.67%;(2)U-Net模型的总体精度明显优于支持向量机,并且分类效果更好。同时,深度学习U-Net模型能够避免“椒盐”现象,分类结果更细腻。
    结论 基于多时相Sentinel-2A/B影像,构建植被指数及红边指数时序特征,同时采用U-Net模型在一定程度上能够提高林分类型分类精度。

     

    Abstract:
    Objective To explore the classification effect of deep learning models on forest vegetation using multi-temporal Sentinel-2A/B images.
    Method In this study, based on the multi-temporal Sentinel-2A/B images and Digital Elevation Model (DEM) in Mengjiagang Forest Farm in Heilongjiang Province, the JM distance of each forest category was used to determine the best single-phase. The characteristics of multi-temporal vegetation index and red edge index (DVI, mNDVI, CIred-edge, NDre1) were analyzed. Support vector machine and optimized U-Net model were used to carry out classification experiments on single-phase + DEM and single-phase + DEM + multi-temporal vegetation index respectively.
    Result (1) On the basis of single-phase + DEM, when adding multi-phase vegetation index, the accuracy of U-Net model was 76.37%, which was 5.7% higher than that of single-phase + DEM; (2) The accuracy of U-Net model was higher than that of support vector machine. In addition, the deep learning U-Net model could avoid the "salt and pepper" phenomenon, and the classification results were more delicate.
    Conclusion Based on multi-temporal Sentinel-2A/B images, the vegetation index and red edge index time series characteristics are constructed, and the U-Net model can improve the classification accuracy of forest types to a certain extent.

     

/

返回文章
返回