高级检索+

杉木连栽氨氧化古菌群落结构与硝态氮含量的关系

Relationship between Ammonia-Oxidizing Archaea Community Structure and Nitrate Nitrogen Content in Chinese Fir Plantations at Different Generations

  • 摘要:
    目的 分析不同代数杉木林的土壤有效氮含量变化,探讨硝态氮与不同分类水平的氨氧化古菌(AOA)群落结构、多样性之间的联系,为人工林土壤氮素的有效性和杉木林土壤质量评估提供参考。
    方法 在福建南平选取4个代数的杉木人工林,采用高通量测序技术对 PCR 扩增的 amoA 基因进行测定,运用 Mantel_r 相关分析、随机森林模型和偏最小二乘路径模型等分析方法研究不同代数的土壤有效氮含量与氨氧化古菌群落丰度、多样性之间的关系。
    结果 随杉木连栽代数增加,硝态氮(NO3-N)含量显著下降,铵态氮(NH4+-N)和微生物量氮(MBN)含量变化不明显。土壤酶活性、氨氧化古菌群落丰度与多样性总体呈降低趋势,土壤有效氮含量与氨氧化古菌群落以及酶活性之间联系密切,其中,氨氧化古菌丰度与多样性指数是影响硝态氮含量的最主要因素。
    结论 随着连栽代数增加,氨氧化古菌群落的丰富度与多样性一定程度上降低,除第4代土壤脲酶和氨单加氧酶活性略有上升,土壤氮循环相关酶活性基本呈降低趋势,从而导致土壤硝态氮含量显著降低,限制了杉木连栽林土壤氮素的有效性。

     

    Abstract:
    Objective This article aims to analyze the changes of soil available nitrogen content in Chinese fir plantations at different generations, and explore the internal relationship between nitrate nitrogen and the structure and diversity of ammonia-oxidizing archaea community, which provides reference for the effective use of soil nitrogen of plantations and soil quality assessment of Chinese fir forest.
    Method Four Chinese fir plantations with different generations were selected in Nanping, Fujian Province. High-throughput sequencing technology was used to determine the amoA gene amplified by PCR. Mantel_r correlation analysis, random forest model and partial least squares path model were used to study the relationship between soil available nitrogen content, ammonia-oxidizing archaea community abundance and diversity in different generations.
    Result With the increase of continuous cropping generations of Chinese fir, the content of nitrate nitrogen (NO3-N) decreased significantly, and the content of ammonium nitrogen (NH4+-N) and microbial biomass nitrogen (MBN) did not change significantly. Soil enzyme activity and the abundance and diversity of ammonia-oxidizing archaea (AOA) community showed a decreasing trend. Soil available nitrogen content was closely related to ammonia-oxidizing archaea community and enzyme activity, and the abundance and diversity of ammonia oxidizing archaea community was the most important factor affecting nitrate nitrogen content.
    Conclusion With the increase of planting generation, the abundance and diversity of ammonia oxidizing archaea community decrease to a certain extent. Except for the fourth generation of soil urease and ammonia nitrogen oxygenase enzyme activity increased slightly, soil nitrogen cycle related enzyme activity shows a decreasing trend, resulting in a significant reduction in soil nitrate nitrogen content, which limits the effectiveness of soil nitrogen in continuous cropping Chinese fir plantations.

     

/

返回文章
返回