高级检索+

基于神经网络控制算法的液肥变量控制系统研究

Research on Liquid Fertilizer Variable Control System Based on Neural Network Control Algorithm

  • 摘要: 为了提高液肥变量控制系统的精度和稳定性,使控制系统具备较好的抗干扰及自适应能力,以液肥变量控制系统为研究对象,建立液肥变量控制系统的数学模型,分别采用常规、模糊自适应及BP神经网络3种控制算法,使用MatLab对3种控制算法进行系统仿真,由仿真结果分析系统质量性能参数,控制系统采用BP神经网络控制器后进行系统实际数据采集,验证系统实际作业效果。各算法质量指标对比表明:BP神经网络的上升时间、过渡时间、静差、超调量优于常规PID和模糊自适应PID算法,以液肥变量控制系统为控制对象,仿真和实际作业效果表现出良好的鲁棒性,响应速度且作业精度达到5%以内,可实现变量作业。

     

    Abstract: In order to improve the accuracy and stability of the liquid fertilizer variable control system, the control system has better anti-interference and adaptive capabilities. Taking the liquid fertilizer variable control system as the research object, the mathematical model of the liquid fertilizer variable control system is established, and the conventional PID control algorithm, fuzzy adaptive PID control algorithm, BP neural network PID control algorithm are used, and the three control algorithms are simulated using MATLAB. The system quality and performance parameters are analyzed from the system simulation results. The control system uses BP neural network controller to perform actual system data collection to verify the actual operation effect of the system. By comparing the quality indicators of each algorithm, the rise time, transition time, static difference, and overshoot of the BP neural network are better than conventional PID and fuzzy adaptive PID algorithms. It is verified that the BP neural network PID control uses the liquid and fertilizer variable control system as the control object. The actual operation effect shows good robustness, response speed and operation accuracy within 5%, which can realize variable operation. The performance of BP neural network PID control algorithm applied to liquid fertilizer variable control system is better than PID and fuzzy adaptive algorithm.

     

/

返回文章
返回