Design and Experiment of Picking Mechanism of Reed Shoot Harvester
-
摘要: 为发挥洞庭湖区自然资源优势,带动沅江经济、生态发展,填补目前国内外芦苇笋采收机研究空白,设计了一款集中掰断式芦苇笋采收机。通过实地调研收集采摘芦苇笋数据,基于柔性双同步带夹持掰断芦苇笋原理,设计了9组同步带机构和2组回转式刀具切尾装置,并根据芦苇笋不同立地角度将其等效简化为悬臂梁力学模型,运用牛顿运动定律和刚体转动定律,列出切尾装置理论功率、掰断和夹持输送芦苇笋理论功率参数表达式。试验结果表明:机具消耗功率约为理论功率的97.9%,液压马达型号GM5-6功率匹配合理;芦苇笋采摘率和损伤率与采摘执行机构同步轮转速和机构倾角相关,当同步轮转速为3000r/min、机构倾角为12°时,采摘率为94.6%,损伤率为6.9%,采收效果最好。Abstract: In order to play the natural resources advantage of Dongting Lake District, promote the economic and ecological development of the ruanjiang, and fill the current domestic and foreign reed shooting machine research on the collection. This article designs a concentrated anti-broken reed shooting machine. Through the ground research, the use of reed shoots, based on the flexible dual synchronous belt clamping the principle of reeds, 9 groups of synchronous belt mechanisms and 2 sets of reincarnated tool cutting devices, and according to the different angles of reed shoots, etc. Simplified simplification of the cantilever beam mechanical model, using Newton’s law and rigid rotation law, list the theoretical power of the tail tailing device, the disconnection and clamping delivery of the theoretical power parameters expressions. The test results show that the power consumption is approximately 97.9%, and the hydraulic motor model GM5-6 power matching is reason. Reed shoot rate and damage ratio are associated with picking executive synchronous wheel speed and institutional inclination, and finally, this harvesting machine is obtained in: The synchronous wheel speed is 3000 R/min, and the maneuveral inclination is 12 °, the picking rate is 94.6%, the damage ratio is 6.9%, the harvesting effect is best.
-
Keywords:
- reed shoots /
- harvester /
- synchronous belt model /
- power matching
-
-
[1] 胡旭跃.洞庭湖湖泊环境系统的演变及驱动因子研究[D].长沙:湖南大学,2007. [2] 周静,万荣荣,吴兴华,等.洞庭湖湿地植被长期格局变化(1987-2016年)及其对水文过程的响应[J].湖泊科学,2020,32(6):1723-1735. [3] 王伟,吕晓兰,王士林,等.茎叶类蔬菜机械化收获技术研究现状与发展[J].中国农业大学学报,2021,26(4):117-127. [4] 舒彩霞,廖庆喜,闵光泽,等.4WG-1.5型高秆芦苇收割机的研制[J].农业机械学报,2002(5):129-130. [5] 苑进.选择性收获机器人技术研究进展与分析[J].农业机械学报,2020,51(9):1-17. [6] 柳沙,龙杨,李钰冰,等.立式芦苇笋剥笋装置:CN201811180636.3.[P].2019-01-18. [7] 李怀平.一种芦苇笋的制备方法:CN201410703839.1.[P].2015-03-04. [8] 周凤波.4CS-1型大葱收获机输送夹持装置的研究[J].农业装备与车辆工程,2015,53(2):78-80. [9] 张涛,李英,宋树民,等.基于柔性夹持的青菜头收获机设计与试验[J].农业机械学报,2020,51(S2):162-169,190. [10] 武丰,王东伟,李瑞川,等.大蒜收获机的设计与试验研究[J].农机化研究,2017,39(12):89-93. [11] 王方艳,孙光全,尚书旗.4CL-1型自走式大葱联合收获机的研制[J].农业工程学报,2019,35(24):39-47. [12] 侯加林,陈彦宇,李玉华,等.定量铺放自走式大葱联合收获机研制[J].农业工程学报,2020,36(7):22-33. [13] 贾智博.大葱茎秆力学特性测试系统的设计与试验[D].泰安:山东农业大学,2018. [14] 李志红,区颖刚.甘蔗收获机圆弧轨道式柔性夹持输送装置的功率模型[J].农业工程学报,2009,25(9):111-116. [15] 闻邦椿.机械设计手册[K].北京:机械工业出版社,2017. [16] 高自成,庞国友,李立君,等.手动背负夹爪式简易梨采摘器研制[J].农业工程学报,2019,35(1):39-45. [17] 刘涛.摆动式割草机具切割性能研究[D].长沙:中南林业科技大学,2020. [18] 张燕青,崔清亮,郭玉明,等.谷子茎秆切割力学特性试验与分析[J].农业机械学报,2019,50(4):146-155,162. [19] 付作立,王德成,李卫,等.双圆盘式苜蓿旋转切割器设计与试验[J].农业机械学报,2018,49(S1):214-220. [20] 成大先.机械设计手册[K].北京:化学工业出版社,2008. [21] 高自成,赵凯杰,李立君,等.悬挂振动式油茶果采摘执行机构设计与试验[J].农业工程学报,2019,35(21):9-17.
计量
- 文章访问数: 0
- HTML全文浏览量: 0
- PDF下载量: 0