Design of Narrow-arc Fan-shaped Anti-drift Nozzle Based on Entrainment Effect of Fruit Tree Canopy of UAV
-
摘要: 针对植保无人机对果树冠层喷洒易产生的药液漂移问题,结合植保无人机对果树喷洒时产生的卷吸效应和扇形喷嘴雾化原理,设计了一种窄弧扇形喷嘴结构,并通过对不同冠层压力损失系数下的喷洒过程进行仿真分析,得到最佳防漂移的窄弧扇形喷嘴结构参数。研究结果表明:喷嘴内径增大,液膜与液带结构趋于稳定,液滴分布均匀,沉积率呈先降后升趋势;冠层压力损失系数降低,粒径频谱宽度减小,但沉积率总体提高;对较厚冠层果树植保时,选择内径1.3 mm、狭缝宽度0.15 mm的喷嘴,防漂移性能较好;对较薄冠层果树植保时,选择内径1.03 mm、狭缝宽度0.2 mm的喷嘴,防漂移性能较好;采用窄弧扇形喷嘴的液滴频谱宽度>0.7,沉积率>94.1%。Abstract: Aiming at the problem of liquid drift caused by plant protection UAV spraying fruit tree canopy, a narrow arc fan nozzle structure is designed by combining the entrainment effect and fan nozzle atomization principle when plant protection UAV sprays fruit tree canopy, through the simulation analysis of the spraying process under different canopy pressure coefficients, the structural parameters of the narrow-arc fan-shaped nozzle with the best anti-drift were obtained. The results show that as the inner diameter of the nozzle increases, the structure of the liquid film and liquid belt tends to be stable, the distribution of droplets is uniform, and the deposition rate first decreases and then increases; the canopy pressure loss coefficient decreases, and the width of the particle size spectrum decreases, but the overall deposition rate improvement.For thick canopy fruit tree planting, choose a nozzle with an inner diameter of 1.30 mm and a slit width of 0.15 mm, with a particle size spectrum width of 0.706 and a deposition rate of 95.2%.For plant protection of thin canopy fruit trees, choose an inner diameter of 1.03 mm and a slit width of 0.20 mm, the nozzle has a particle size spectrum width of 0.858 and a deposition rate of 98.2%. The droplet spectrum of the narrow-arc fan-shaped nozzle is greater than 0.7, and the deposition rate is greater than 94.1%.
-
-
[1] 刘杰,姜玉英,黄冲,等.2021年全国粮食作物重大病虫害发生趋势预报[J].中国植保导刊,2021,41(1):37-39,42. [2] 谢文杰.农业有害生物防治中减量控害增效技术的应用[J].农业开发与装备,2019(4):83. [3] 郑瑞华.果树病虫害防治中的农药污染及治理途径创新[J].现代园艺,2019(5):152-153. [4] 姜业元,曹佃龙,高磊,等.果园精准施药技术的现状与发展趋势分析[J].南方农机,2021,52(15):44-46. [5] 柳琪.无人机在果园植保中越来越成熟[J].农机市场,2021(7):23-25. [6] 王娟,兰玉彬,姚伟祥,等.单旋翼无人机作业高度对槟榔雾滴沉积分布与飘移影响[J].农业机械学报,2019,50(7):109-119. [7] 张豪,祁力钧,吴亚垒,等.无人机果树施药旋翼下洗气流场分布特征研究[J].农业工程学报,2019,35(18):44-54. [8] 张豪,祁力钧,吴亚垒,等.基于Porous模型的多旋翼植保无人机下洗气流分布研究[J].农业机械学报,2019,50(2):112-122. [9] 王昌陵,何雄奎,曾爱军,等.基于仿真果园试验台的植保无人机施药雾滴飘移测试方法与试验[J].农业工程学报,2020,36(13):56-66. [10] 何勇,肖舒裴,方慧,等.植保无人机施药喷嘴的发展现状及其施药决策[J].农业工程学报,2018,34(13):113-124. [11] 曾爱军,王昌陵,宋坚利,等.风洞环境下喷头及助剂对植保无人飞机喷雾飘移性的影响[J].农药学学报,2020,22(2):315-323. [12] HUNTER J E,GANNON T W,RICHARDSON R J,et al.Coverage and drift potential associated with nozzle and speed selection for herbicide applications using an unmanned aerial sprayer[J].Weed technology,2020,34(2):235-240.
[13] 王帅.扇形喷嘴的雾化特性研究及粒径试验分析[D].镇江:江苏大学,2021:. [14] SAYINCI B.Effect of strainer type,spray pressure,and orifice size on the discharge coefficient of standard flat-fan nozzles[J].Turkish journal of agriculture and forestry,2015,39(5):692-704.
[15] CHEN C,LI S,WU X,et al.Construction of a theoretical model for fan nozzles with precise atomization angles for plant protection[J].Chemosphere,2022,287:132017.
[16] ZHAO C,ZHANG C,BO C,et al.Design and optimization of fan-shaped nozzle structure based on CFD[C]//2020 3rd International Conference on Power and Energy Applications (ICPEA).IEEE,2020:145-149.
[17] BROUMAND M,ASGARIAN A,BUSSMANN M,et al.Spatio-temporal dynamics and disintegration of a fan liquid sheet[J].Physics of fluids,2021,33(11):112109.
[18] 张晓东,董志国,郝鹏飞,等.扁平扇形喷嘴设计及试验研究[J].机械设计与研究,2008(1):89-92. [19] WANG J,LIANG Q,ZENG T,et al.Drift potential characteristics of a flat fan nozzle:a numerical and experimental study[J].Applied sciences,2022,12(12):6092.
[20] 许童羽,于丰华,曹英丽,等.粳稻多旋翼植保无人机雾滴沉积垂直分布研究[J].农业机械学报,2017,48(10):101-107.
计量
- 文章访问数: 6
- HTML全文浏览量: 0
- PDF下载量: 0