面向大面积渔业环境监测的长距离低功耗LoRa传感器网络
Long range low power sensor networks with LoRa sensor for large area fishery environment monitoring
-
摘要: 该文针对近海渔业和大面积水产养殖环境监测应用周期长,覆盖面积大等特点,设计了基于LoRa技术的长距离低功耗无线传感网络系统。该系统设计了低成本的双信道LoRa网关,并在此基础之上提出了一种新颖的速率自适应的双信道同步调度无线通信策略。该策略充分利用LoRa技术多扩频因子多数据率的特点,对网关不同距离范围内的终端节点自动分配不同的扩频因子以确保网络连通性,并通过MAC层同步调度,在保证监测网络大面积覆盖的同时,大大降低了无线信道碰撞的概率,提高了异常数据上传的实时性和终端节点的平均网络寿命。通过仿真和现场试验验证了本方案的有效性,系统可有效覆盖半径3 km的监测区域,100个终端节点的网络规模;对于视距通信,该策略的投递率从单一扩频因子的0.8提升到0.99,对于数据上传周期为10 s的快速通信,投递率从单一扩频因子的0.4提升到0.95以上;如采用3 600 mA?h锂电池,数据上传周期为10 min,终端节点寿命可达1 a。Abstract: Abstract: The design of wireless monitoring system for fishery environment based on Internet of Things technology has become a research hotspot at present. Aiming at the characteristics of long monitoring period and large coverage area in applications of inshore fishery and large area aquaculture environment monitoring, -the long range low power sensor networks was designed based on LoRa technology-. Due to the expensive price and technology closedness of commercial LoRa gateway SX1301, a low cost open dual-channel gateway was designed, based on two LoRa SX1278 transceivers. Based on the hardware design of dual-channel gateway, a dual-channel synchronous communication scheme with adaptive data rate was proposed. Two LoRa SX1278 transceivers corresponded to two independent channels, namely periodic data channel 1 and special function channel 2. The periodic data channel was used to upload regular packets, data collecting cycle of which was divided into several periods using different spreading factor (SF). Each period was equally split into several slots to the nodes within the same distance range in which the spreading factor was the same. The special function channel 2 was used to upload urgent packets, join in network, and synchronize time. For urgent packets, the terminal nodes could directly upload by switching channel 2 without waiting for the allocated slot arriving , to improve the real-time response of the network system. The scheme fully took the advantage of the characteristics of multiple spreading factors based on LoRa. Different spreading factors was assigned to terminal nodes according to the distances to gateway automatically with the different received signal strength indication and signal noise ratio of the received packets to ensure network connectivity. The scheme was built into a custom Matlab simulator to evaluate the data collision ratio, communication delay and energy cost performance varying with the network size(number of terminal node). With the terminal nodes increasing to 100, the performance of proposed scheme was nearly constant; but the collision ratio with single channel and single spreading factor was nearly linearly increasing to 1, and energy cost increased much more. The field experiment was carried out to test the effectiveness and reliability in Dishui Lake in Shanghai. An application program(App) for Android mobile phone was developed for monitoring field data. Four terminal nodes with dissolved oxygen sensor and pH value sensor were deployed in different distance to gateway. To line-of-sight communication, the average delivery ratio of proposed scheme increased from 0.8 to 0.99 compared with single spreading factor. To the rapid communication with 10 s uploading interval, the average delivery ratio increased from 0.4 to 0.95 compared with single spreading factor of 12. The proposed scheme largely reduced the wireless channel collision probability, improving the real-time performance for urgent data and the average lifetime of terminals, while ensuring large coverage area of monitoring network by the MAC layer synchronization scheduling. The simulation and experiment results showed the effectiveness of the proposed scheme. The designed sensor network system could cover a monitoring region with radius of 3 km, with the capacity of 100 terminal nodes and terminal node with 3600 mA?h lithium battery could work for 1 a with the 10 min data uploading interval.
-
Keywords:
- aquaculture /
- monitoring /
- wireless sensor networks /
- LoRa /
- synchronous /
- adaptive data rate
-
-
[1] 李道亮,杨昊. 农业物联网技术研究进展与发展趋势分析[J]. 农业机械学报,2018,49(1):1-20.Li Daoliang, Yang Hao. State-of-the-art review for Internet of Things in agriculture[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(1): 1-20. (in Chinese with English abstract) [2] 李瑾,郭美荣,高亮亮. 农业物联网技术应用及创新发展策略[J]. 农业工程学报,2015,31(增刊2):200-209.Li Jin, Guo Meirong, Gao Liangliang. Application and innovation strategy of agricultural Internet of Things[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(Supp.2): 200-209. (in Chinese with English abstract) [3] Xu G, Shen W, Wang X. Applications of wireless sensor networks in marine environment monitoring: A survey[J]. Sensors, 2014, 14(9): 16932-16954. [4] 黄建清,王卫星,姜晟,等. 基于无线传感器网络的水产养殖水质监测系统开发与试验[J]. 农业工程学报,2013,29(4): 183-190.Huang Jianqing, Wang Weixing, Jiang Sheng, et al. Development and test of aquacultural water quality monitoring system based on wireless sensor network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(4): 183-190. (in Chinese with English abstract) [5] 马从国,赵德安,王建国,等. 基于无线传感器网络的水产养殖池塘溶解氧智能监控系统[J]. 农业工程学报,2015,31(7): 193-200.Ma Congguo, Zhao Dean, Wang Jianguo, et al. Intelligent monitoring system for aquaculture dissolved oxygen in pond based on wireless sensor network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(7): 193-200. (in Chinese with English abstract) [6] 杨旭辉,周庆国,韩根亮,等. 基于ZigBee的节能型水产养殖环境监测系统[J]. 农业工程学报,2015,31(17):183-190.Yang Xuhui, Zhou Qingguo, Han Genliang, et al. Energy-efficient aquaculture environmental monitoring system based on ZigBee[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(17): 183-190. (in Chinese with English abstract) [7] 颜波,石平. 基于物联网的水产养殖智能化监控系统[J]. 农业机械学报,2014,45(1): 259-265.Yan Bo, Shi Ping. Intelligent monitoring system for aquiculture based on internet of things[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(1): 259-265. (in Chinese with English abstract) [8] 蒋建明,史国栋,赵德安,等. 基于LEACH协议的水产养殖参数智能监控系统[J]. 农业机械学报,2014,45(11): 286-291.Jiang Jianming, Shi Guodong, Zhao Dean, et al. Intelligent monitoring system of aquaculture parameters based on LEACH protocol[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(11): 286-291. (in Chinese with English abstract) [9] 蒋建明,史国栋,赵德安,等. 水产养殖参数无线测量网络的长生命周期研究[J]. 农业工程学报,2014,30(7):147-154.Jiang Jianming, Shi Guodong, Zhao Dean, et al. Research on life cycle of wireless network for measuring environmental parameters in aquaculture[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(7): 147-154. (in Chinese with English abstract) [10] Simbeye D S, Zhao J, Yang S. Design and deployment of wireless sensor networks for aquaculture monitoring and control based on virtual instruments[J]. Computers & Electronics in Agriculture, 2014, 102(3): 31-42. [11] Luo H, Li G, Peng W, et al. Real-time remote monitoring system for aquaculture water quality[J]. International Journal of Agricultural & Biological Engineering, 2015, 8(6): 136-143. [12] Alippi C, Camplani R, Galperti C, et al. A robust, adaptive, solar-powered WSN framework for aquatic environmental monitoring[J]. IEEE Sensors Journal, 2011, 11(1): 45-55. [13] 陈海磊. 基于物联网的大面积水产养殖远程监控系统设计[D]. 镇江:江苏大学,2016.Chen Hailei. Design of Remote Monitoring System for Large Area Aquaculture Based on Internet of Things[D]. Zhenjiang: Jiangsu University, 2016. (in Chinese with English abstract) [14] 申庆祥,张宇华. 生命周期最大化的无线水质监测网络路由优化研究[J]. 软件工程,2017,20(9):45-48,41.Shen Qingxiang, Zhang Yuhua. Research on route optimization of the wireless water quality monitoring network based on lifetime maximization[J]. Software Engineering, 2017, 20(9):45-48, 41. (in Chinese with English abstract) [15] 李慧,刘星桥,李景,等. 基于物联网Android平台的水产养殖远程监控系统[J]. 农业工程学报,2013,29(13):175-181.Li Hui, Liu Xingqiao, Li Jing, et al. Aquiculture remote monitoring system based on IOT Android platform[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(13): 175-181. (in Chinese with English abstract) [16] Ali A, Shah G A, Farooq M O, et al. Technologies and challenges in developing Machine-to-Machine applications: A survey[J]. Journal of Network & Computer Applications, 2017, 83: 124-139. [17] LoRa Alliance. LoRaWAN(tm) 1. 1 Specification[EB/OL]. (2017-10-11)[2018-08-01]. https://lora-alliance.org/sites/default/ files/2018-04/lorawantm_specification_-v1. 1. pdf. [18] Semtech. SX1301 Datasheet[EB/OL]. (2017-06-01)[2018-08- 01]. https://www.semtech. com/uploads/documents/sx1301. Pdf. [19] Augustin A, Yi J, Clausen T, et al. A study of LoRa: Long range & low power networks for the Internet of Things[J]. Sensors, 2016, 16(9): 1466. [20] Casals L,Mir B,Vidal R,et al. Modeling the energy performance of LoRaWAN [J]. Sensors, 2017, 17(10): 2364. [21] Petajajarvi J, Mikhaylov K, Pettissalo M, et al. Performance of a low-power wide-area network based on LoRa technology: Doppler robustness, scalability, and coverage[J]. International Journal of Distributed Sensor Networks, 2017, 13(3): 1-16. [22] Georgiou O,Raza U. Low PowerWide Area Network Analysis: Can LoRa Scale?[J]. IEEEWirel. Commun. Lett. 2017, 6(2): 162–165. [23] Song Y H, Lin J, Tang M, et al. An internet of energy things based on wireless LPWAN[J]. Engineering, 2017, 3(4): 460-466. [24] Kim D Y, Jung M. Data transmission and network architecture in long range low power sensor networks for IoT[J]. Wireless Personal Communications, 2017, 93(1): 119-129. [25] Pham C. Building Low-Cost Gateways and Devices for Open LoRa IoT Test-Beds[M]//Guo S, Wei G, Xiang Y, et al. Testbeds and Research Infrastructures for the Development of Networks and Communities. Cham: Springer International Publishing, 2016: 70-80. [26] Semtech. SX1278 Datasheet[EB/OL]. (2013-09-01) [2018- 08- 01]. https://www.semtech.com/uploads/documents/DS_SX1276- 7-8-9. pdf. [27] STMicroelectronics. STM32F429 Datasheet[EB/OL]. (2013- 03-19)[2018-08-01]. https://www.st.com/resource/en/datasheet/ stm32f429ze. pdf. [28] STMicroelectronics. STM32L151 Datasheet[EB/OL]. (2014- 03-12)[2018-08-01]. https://www.st.com/resource/en/datasheet/ stm32l151rb-a. pdf. [29] Semtech. LoRa(tm) Modulation Basics[EB/OL]. (2015-05-01) [2018-08-01]. https://www.semtech.com/uploads/documents/an1200.22. pdf. [30] Abramson N. The Aloha System: Final Technical Report[R]. Hawaii University: Honolulu, HI, USA, 1974. [31] Polastre J, Hill J, Culler D. Versatile Low Power Media Access for Wireless Sensor Networks[C]//Proceedings of the 2nd ACM SenSys Conference, Baltimore, MD, USA, 2004: 95-107. -
期刊类型引用(45)
1. 王雪皓,李逸明,邓书辉. 雏鹅舍环境无线多点远程监测系统设计. 黑龙江畜牧兽医. 2025(03): 67-75 . 百度学术
2. 杨鹏城,刘砚一,陈书畅,沈奕聪,宋晨悦. 基于LoRa组网的超低功耗径流含沙量检测系统. 南京林业大学学报(自然科学版). 2025(02): 161-168 . 百度学术
3. 印华,方挺,董冲,胡祥翱. 基于LoRa的低功耗温度采集传感器系统设计. 重庆工商大学学报(自然科学版). 2024(01): 53-59 . 百度学术
4. 王大涛,滕德贵,王灵犀. 基于LoRa的多传感器低功耗数据采集方法. 现代电子技术. 2024(10): 23-27 . 百度学术
5. 杨晓平,李雪寒,聂鹏程. 设施生猪环境调控现状研究和未来展望. 中国农业信息. 2024(02): 83-96 . 百度学术
6. 刘天翔,郭文忠,韩晓蓓,海云瑞,李锋,王发香,徐巍. 基于称量反馈的设施番茄灌溉系统的构建与应用. 农业工程学报. 2024(13): 85-96 . 本站查看
7. 冀汶莉,王佳豪,王新伟. 基于LoRa的农业大田土壤多参数监测系统设计. 无线电工程. 2023(02): 456-464 . 百度学术
8. 任壮,汪军,孔超,李文睿. 温室大棚环境动态测控系统研制. 电子测量技术. 2023(01): 65-71 . 百度学术
9. 蓝升传,陶干强,房智恒,曾庆田,王史文,朱忠华. 基于LoRa和物联网技术的矿井环境监测系统设计. 黄金科学技术. 2023(01): 144-152 . 百度学术
10. 莫少凡,孔平,李松杰,宋丽颖,李彩瑗,谢能刚. 带有水质监测的增氧机远程控制系统研究. 渔业现代化. 2023(04): 83-90 . 百度学术
11. 于大恒,王春,李婉婷. 基于LoRaWAN通信的升降机安全高度预警系统的设计. 黑龙江科学. 2023(16): 87-89+93 . 百度学术
12. 余钱程,管延敏,黄温赟,韦龙,虞嘉晨. 基于STM32与树莓派的养殖水质监测无人艇系统研究. 渔业现代化. 2023(05): 33-42 . 百度学术
13. 白韦娟,何磊,何信一,韩佳晖. 基于LoRa的环境检测系统的设计与实现. 自动化应用. 2023(20): 227-230 . 百度学术
14. 丁承君,胡博,刘云帆,贾丽臻. 基于物联网的建筑工地扬尘监测系统设计. 传感器与微系统. 2022(02): 101-104 . 百度学术
15. 胡乃平,贾浩杰,袁绍正. 基于IPv6和LoRa的智能门锁系统设计. 计算机测量与控制. 2022(02): 252-256+262 . 百度学术
16. 杨博,朱昊. 太阳能供电定位报警系统的设计. 国外电子测量技术. 2022(01): 46-50 . 百度学术
17. 欧洋,马春燕,郝彦钊. 基于LoRa气雾立体栽培环境数据监测系统设计. 电子器件. 2022(01): 244-250 . 百度学术
18. 晏子雄,张毅. 基于LoRa与GPS的低功耗物流定位系统. 计算机应用与软件. 2022(05): 165-169 . 百度学术
19. 朱轩毅,郭思为,冷泽松,陈靖翰,王平. LoRa自组网的智能感知终端监控验证平台. 单片机与嵌入式系统应用. 2022(09): 58-62 . 百度学术
20. 朱荣军,金璐. 基于无线传感网络的大水域移动污染源排放监测系统设计. 淮阴师范学院学报(自然科学版). 2022(04): 320-324 . 百度学术
21. 张钰. 基于改进型LoRa楼宇智能门锁设计与实现. 建材技术与应用. 2022(06): 63-66 . 百度学术
22. 陈进,傅晟捷,关卓怀,朱富豪,朱林军,夏慧,邢立成. 基于LoRa技术的联合收获机群通信方法. 农业工程学报. 2022(16): 81-89 . 本站查看
23. 柯慧贤. 面向水产养殖的多参数监测仪的设计. 黑龙江环境通报. 2022(04): 51-54 . 百度学术
24. 海涛,陈娟,韦文,李娜娜,曾泽明. 物联网技术在养殖塘水质监控系统中的应用. 河南科技大学学报(自然科学版). 2021(02): 53-58+7 . 百度学术
25. 王皓萱,郝万君,夏以诚,蒋楠,赵柯,万洋. 基于LoRa技术的温室农作物自动化培育系统设计. 单片机与嵌入式系统应用. 2021(02): 71-74+78 . 百度学术
26. 胡颖,万隆君,徐轶群. 可抛弃式水动力监测微型浮标设计. 海洋技术学报. 2021(01): 35-42 . 百度学术
27. 苗振林,徐伟,杨靖玮,杨燕华,李海超. 基于多物理量的复合传感技术在智慧配电房中的应用研究. 电网与清洁能源. 2021(03): 78-85 . 百度学术
28. 海涛,陈娟,周文杰,陆猛,曾泽明. 基于LoRa和NB-IoT物联网技术的孵化监控系统. 中国农机化学报. 2021(05): 159-165 . 百度学术
29. 胡颖,徐轶群. 基于窄带物联网通信的海洋水质监测系统设计. 广州航海学院学报. 2021(02): 14-19 . 百度学术
30. 翁正,陈明,池涛,刘亚蕊. 带有溶氧预测的水产养殖监测平台的研究. 渔业现代化. 2021(04): 43-50 . 百度学术
31. 杨永金. LoRa无线技术在无线水质传感器开发应用研究. 科技资讯. 2021(25): 1-3 . 百度学术
32. 吴志东,房俊龙,刘美奇,巴文革,吴爽,闫少康. 基于LoRa的猪舍环境监测系统设计. 黑龙江畜牧兽医. 2021(22): 37-42+148 . 百度学术
33. 杨永金. 基于LoRa的低功耗无线水质传感器设计与研究. 中国新通信. 2021(23): 10-11 . 百度学术
34. 施珮,匡亮,唐玥,袁永明,余晓栋. 基于改进SVDD算法的池塘水质数据流异常检测. 农业工程学报. 2021(24): 249-256 . 本站查看
35. 谭星,于新文,张旭,李凡,刘燕,欧阳萱,文永志. 桉树人工林中433 MHz信道LoRa信号的传播特性. 林业工程学报. 2020(02): 137-143 . 百度学术
36. 杨英,任选. 基于LoRa的水产养殖水质监控系统设计. 水产学杂志. 2020(01): 73-79 . 百度学术
37. 邓嘉明,罗细池,李江广. 基于大数据的农业物联网体系建设与应用研究. 山西大同大学学报(自然科学版). 2020(03): 42-44+47 . 百度学术
38. 曹守启,禹松,张铮. 面向渔业物联网的GPS相对定位策略. 农业工程学报. 2020(10): 158-165 . 本站查看
39. 付学谦,周亚中,孙宏斌,王洋. 园区农业能源互联网:概念、特征与应用价值. 农业工程学报. 2020(12): 152-161 . 本站查看
40. 吕石磊,魏志威,吴奔雷,李震,洪添胜. 果园单轨运输机在轨状态感知系统研制. 农业工程学报. 2020(15): 56-64 . 本站查看
41. 刘传领,陈明,池涛. 基于LoRa无线通信的水产养殖监测系统设计及应用. 华南农业大学学报. 2020(06): 154-160 . 百度学术
42. 朱琪,李艳丽,戴亚文. 基于LoRa的垃圾箱低功耗传感器系统. 武汉理工大学学报. 2020(06): 97-105 . 百度学术
43. 李琦,刘章华,肖俊生. 基于LoRa的草原牛行为特征数据采集系统设计. 黑龙江畜牧兽医. 2019(15): 63-69+182-183 . 百度学术
44. 潘锋. 面向智能井盖监控的LoRa网络容量规划. 信息技术. 2019(10): 59-64 . 百度学术
45. 宋晓霞,陈明,池涛. 基于LoRa的小龙虾生态养殖监控系统设计与实现. 渔业现代化. 2019(05): 22-28+81 . 百度学术
其他类型引用(33)
计量
- 文章访问数: 1461
- HTML全文浏览量: 0
- PDF下载量: 792
- 被引次数: 78