高级检索+

短链葡聚糖-姜黄素纳米乳液的制备及结构表征

冯涛, 曾小兰, 王珂, Osvaldo Campanella

冯涛, 曾小兰, 王珂, Osvaldo Campanella. 短链葡聚糖-姜黄素纳米乳液的制备及结构表征[J]. 农业工程学报, 2019, 35(1): 303-309. DOI: 10.11975/j.issn.1002-6819.2019.01.037
引用本文: 冯涛, 曾小兰, 王珂, Osvaldo Campanella. 短链葡聚糖-姜黄素纳米乳液的制备及结构表征[J]. 农业工程学报, 2019, 35(1): 303-309. DOI: 10.11975/j.issn.1002-6819.2019.01.037
Feng Tao, Zeng Xiaolan, Wang Ke, Osvaldo Campanella. Preparation and structure characterization of short glucan chain-curcumin nano-emulsion[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(1): 303-309. DOI: 10.11975/j.issn.1002-6819.2019.01.037
Citation: Feng Tao, Zeng Xiaolan, Wang Ke, Osvaldo Campanella. Preparation and structure characterization of short glucan chain-curcumin nano-emulsion[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(1): 303-309. DOI: 10.11975/j.issn.1002-6819.2019.01.037

短链葡聚糖-姜黄素纳米乳液的制备及结构表征

基金项目: 上海市曙光项目计划(2015SG1)

Preparation and structure characterization of short glucan chain-curcumin nano-emulsion

  • 摘要: 利用短链葡聚糖(short glucan chains,SGC)的螺旋空间结构来包埋姜黄素(curcumin,CUR)。通过使用高剪切分散乳化机高速剪切溶液5 min,用纳米均质机在50 MPa压力下高压均质经剪切后的乳液2次制备成纳米乳液以提高其包埋率和载药量。XRD (x-ray diffraction)和TGA (thermogravimetric analysis)很好的验证了包合物的形成,通过TGA、SEM (scanning electron microscopy)、激光粒径分析仪等各种表征分析得出短链葡聚糖-姜黄素纳米乳液制备成功,所制得的乳液对姜黄素的包埋率和载药量都高于短链葡聚糖-姜黄素包合物,分别达到了71.11%和12.07%,说明制备成纳米乳液对姜黄素的包埋率和载药量都有了明显的提高。所制备的纳米乳液的粒径小于300 nm,粒径分布均一,Zeta电位观测表明所制得的乳液的稳定性有所提高。为提高食品及医药领域姜黄素的生物利用率提供了一定的参考意义。
    Abstract: Abstract: In order to solve the problem of curcumin's low biological value in food and drug, the helical space structure of the short glucan chains with a short DP (degree of polymerization) was induced to embed the water insolubility curcumin and to enhance its biological value. This article introduced a way how to make short glucan chains and use short glucan chains to encapsulate with curcumin to make inclusion complexes and nano-emulsions. Short glucan chains were obtained by pullanase's enzymatic hydrolysis, which came out successfully by the verification of XRD (X-ray diffraction) results. The inclusion complexes were made by mixing, but its poor encapsulation efficiency and loading content were about 28.46% and 1.27%, separately. Short glucan chain-curcumin nano-emulsions were produced by emulsification and shearing to improve the embedding rate and drug loading, using the Hi-shear dispersing emulsifier with D-speed shearing solution for 5 min to get SGC-CUR nano-emulsion, and the nano-homogenizer was used to homogenize the sheared emulsion twice under a pressure of 50 MPa to prepare the emulsion. High embedding rate and drug loading were produced by making curcumin-short glucan chain into nano-emulsions, and we got a good result of embedding rate and drug loading: 71.11% and 12.07%, respectively. Popular methods as SEM (scanning electron microscopy), TGA (thermogravimetric analysis), Zeta etc. were measured to analysis stability, water solubility and structure characterization. Curcumin's solubility was not only increased by adding emulsifier but also by interaction behaviors between short glucan chains and curcumin, which stop crystal's growing and kept amorphous state to enhance its solubility. From SEM we knew that the short glucan chain-curcumin had rough surface because of the enzymatic hydrolysis, partially cracked and stuck together, this phenomenon was almost the same with former studies that starch nanoparticles were adhered. As for nano-emulsions' Zeta potential were below 20 mV which means it has a low stability and has a room to improve, this result was same with the picture showed at the 7th day that the emulsion slowly began to stratify. The nano-emulsion particle size changed from 238.33 to 170.87 nm when fewer emulsifier were added, probably because of more water/oil interface had produced, which supported the formation of smaller droplets. The PDI (particle size distribution index) of nano-emulsions was all less than 0.3, which means the particle size distribution followed a uniform distribution pattern. The process greatly improved the solubility of curcumin, increased the stability of curcumin, and provided a suitable way for the medical field to find better embedding of curcumin wall materials.
  • [1] Mitchell M S. Isolation of curcumin from turmeric[J]. Journal of Chemical Education, 2000, 77(3): 359-360.
    [2] Pizzo P, Scapin C, Vitadello M, et al. Grp94 acts as a mediator of curcumin-induced antioxidant defence in myogenic cells[J]. Journal of Cellular & Molecular Medicine, 2010, 14(4): 970-981.
    [3] Sugiyama Y, Kawakishi S, Osawa T. Involvement of the beta-diketone moiety in the antioxidative mechanism of tetrahydrocurcumin[J]. Biochemical Pharmacology, 1996, 52(4): 519-544.
    [4] Srimal R C, Dhawan B N. Pharmacology of diferuloyl methane (curcumin), a non-steroidal anti-inflammatory agent[J]. Journal of Pharmacy & Pharmacology, 2011, 25(6): 447-452.
    [5] Aggarwal B B, Harikumar K B. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases[J]. International Journal of Biochemistry & Cell Biology, 2009, 41(1): 40-59.
    [6] Lee Y K, Lee W S, Hwang J T, et al. Curcumin exerts antidifferentiation effect through AMPKalpha-PPAR-gamma in 3T3-L1 adipocytes and antiproliferatory effect through AMPKalpha-COX-2 in cancer cells[J]. Journal of Agriculture and Food Chemistry, 2009, 57(1): 305-315.
    [7] Jordan W C, Drew C R. Curcumin:A natural herb with anti-HIV activity[J]. Journal of the National Medical Association, 1996, 88(6): 333.
    [8] De R, Kundu P, Swarnakar S, et al. Antimicrobial activity of curcumin against helicobacter pylori isolates from India and during infections in mice[J]. Antimicrobial Agents & Chemotherapy, 2009, 53(4): 1592-1599.
    [9] Wang Y, Lu Z, Wu H, et al. Study on the antibiotic activity of microcapsule curcumin against foodborne pathogens[J]. International Journal of Food Microbiology, 2009, 136(1): 71-74.
    [10] Jovanovic S V, Boone Charles W, Steenken, et al. How curcumin works preferentially with water soluble antioxidants [J]. Journal of the American Chemical Society, 2001, 123(13): 3064-3072.
    [11] Chignell C F, Bilskj P, Reszka K J, et al. Spectral and photochemical properties of curcumin[J]. Photochemistry & Photobiology, 1994, 59(3): 295-302.
    [12] Yang C, Su X , Liu A , et al. Advances in clinical study of curcumin[J]. Current Pharmaceutical Design, 2013, 19(11): 1966-1973.
    [13] Aggarwal B B, Sung B. Pharmacological basis for the role of curcumin in chronic diseases: An age-old spice with modern targets[J]. Trends in Pharmacological Sciences, 2009, 30(2): 85-94.
    [14] Anand P, Kunnumakkara A B, Newman R A, et al. Bioavailability of curcumin: Problems and promises[J]. Molecular Pharmaceutics, 2007, 4(6): 807-818.
    [15] Freitas R A, Paula R C, Jpa F, et al. Amylose contents, rheological properties and gelatinization kinetics of yam (Dioscorea alata) and cassava (Manihot utilissima) starches[J]. Carbohydrate Polymers, 2004, 55(1): 3-8.
    [16] 方晨璐,黄峻榕,任瑞珍,等. 酶解薯类淀粉适用于电镜观察其颗粒表面及内部结构[J]. 农业工程学报,2018,34(22): 306-312.Fang Chenlu, Huang Junrong, Ren Ruizhen, et al. Amylases enzymolysis of tuber starch granules for surface and internal structure observation under scanning electron microscopy[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(22): 306-312. (in Chinese with English abstract)
    [17] Chang R, Yang J, Ge S, et al. Synthesis and self-assembly of octenyl succinic anhydride modified short glucan chains based amphiphilic biopolymer: Micelles, ultrasmall micelles, vesicles, and lutein encapsulation/release[J]. Food Hydrocolloids, 2017, 67: 14-26.
    [18] Fanta G F, Kenar J A, Felker F C. Nanoparticle formation from amylose-fatty acid inclusion complexes prepared by steam jet cooking[J]. Industrial Crops and Products, 2015, 74: 36-44.
    [19] Marinopoulou A, Kalogianni E P, Raphaelides S N. Amylose-fatty acid inclusion complexes as examined by interfacial tension measurements[J]. Colloids Surf B Biointerfaces, 2016, 137: 133-137.
    [20] Le Bail P, Chauvet B, Simonin H, et al. Formation and stability of amylose ligand complexes formed by high pressure treatment[J]. Innovative Food Science & Emerging Technologies, 2013, 18: 1-6.
    [21] Zhu F, Wang Y J. Characterization of modified high-amylose maize starch-α-naphthol complexes and their influence on rheological properties of wheat starch[J]. Food Chemistry, 2013, 138(1): 256-262.
    [22] Ades H, Kesselman E, Ungar Y, et al. Complexation with starch for encapsulation and controlled release of menthone and menthol[J]. LWT - Food Science and Technology, 2012, 45(2): 277-288.
    [23] 王永辉,杨晓泉,王金梅,等. 蛋白水解物及多糖负载姜黄素制备纳米颗粒及其稳定性[J]. 农业工程学报,2015,31(10):296-302.Wang Yonghui, Yang Xiaoquan, Wang Jinmei, et al. Preparation of curcumin nanoparticles by protein hydrolysates and polysaccharids and its stabilization[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(10): 296-302. (in Chinese with English abstract)
    [24] Yu H, Huang Q. Investigation of the absorption mechanism of solubilized curcumin using Caco-2 cell monolayers[J]. Journal of Agricultural & Food Chemistry, 2011, 59(17): 9120-9126.
    [25] Yu H, Huang Q. Improving the oral bioavailability of curcumin using novel organogel-based nanoemulsions[J]. Journal of Agricultural & Food Chemistry, 2012, 60(21): 5373-5382.
    [26] 杨宝玲,陈烨. 玉米淀粉-辛烯基琥珀酸淀粉酯制备亚麻油微胶囊[J]. 农业工程学报,2010,26(7): 364-368.Yang Baoling, Chen Ye. Preparation of linseed oil microcapsules by starch octenyl succinate-maize starch[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010,26(7): 364-368. (in Chinese with English abstract)
    [27] Sun Q, Li G, Dai L, et al. Green preparation and characterisation of waxy maize starch nanoparticles through enzymolysis and recrystallisation[J]. Food Chemistry, 2014, 162(11): 223-228.
    [28] Aditya N P, Yang H, Kim S, et al. Fabrication of amorphous curcumin nanosuspensions using β-lactoglobulin to enhance solubility, stability, and bioavailability[J]. Colloids & Surfaces B Biointerfaces, 2015, 127: 114-121.
    [29] Gomand S V, Lamberts L, Grommes C J, et al. Molecular and morphological aspects of annealing-induced stabilization of starch crystallites[J]. Biomacromolecules, 2012, 13(5): 1361-1370.
    [30] 冯涛,曾小兰,张钰,等. 短链葡聚糖包合姜黄素的分子机制[J]. 现代食品科技,2018, 34(10):111-116.Feng Tao, Zeng Xiaolan, Zhang Yu, et al. Green preparation of short glucan chain and its inclusion behavior of molecular dynamics simulation behavior with curcumin[J]. Modern Food Science and Technology, 2018, 34(10): 111-116. (in Chinese with English abstract)
    [31] Marsh M R A, Waight M S G. The Effect of pH on the Zeta Potential of Wheat and Potato Starch[J]. Starch‐St?rke, 1982, 34(5): 149-152.
    [32] Liu D, Wu Q, Chen H, et al. Transitional properties of starch colloid with particle size reduction from micro- to nanometer [J]. Journal of Colloid & Interface Science, 2009, 339(1): 117.
    [33] Heiati H, Phillips N C, Tawashi R. Evidence for Phospholipid Bilayer Formation in Solid Lipid Nanoparticles Formulated with Phospholipid and Triglyceride[J]. Pharmaceutical Research, 1996, 13(9): 1406-1410.
    [34] Kim H Y, Han J A, Kweon D K, et al. Effect of ultrasonic treatments on nanoparticle preparation of acid-hydrolyzed waxy maize starch[J]. Carbohydrate Polymers, 2013, 93(2): 582-588.
    [35] Sihem Bel Haaj, Magnin Albert. Starch nanoparticles formation via high power ultrasonication[J]. Carbohydrate Polymers, 2013, 92(2): 1625.
    [36] Mansaray K G, Ghaly A E. Determination of kinetic parameters of rice husks in oxygen using thermogravimetric analysis[J]. Biomass & Bioenergy, 1999, 17(1): 19-31.
    [37] 苑春苗, 李畅,李刚,等. 氮气气氛下玉米淀粉热分解动力学参数[J]. 东北大学学报: 自然科学版, 2012, 33(4): 584-587.Yuan Chunmiao, Li Chang, Li Gang, et al. Kinetic parameters of thermal decomposition of corn starch under nitrogen atmosphere[J]. Journal of Northeastern University: Natural Science Edition, 2012, 33(4): 584-587. (in Chinese with English abstract)Preparation and structure characterization of short glucan chain-curcumin nano-emulsion
  • 期刊类型引用(13)

    1. 黄文清,马娟娟. 纳米乳液在食品领域的研究应用进展. 中国食品添加剂. 2024(04): 327-335 . 百度学术
    2. 宁珂,李松原,赵凯. 直链淀粉-香叶醇包合物的制备及其性质. 食品科学技术学报. 2024(03): 139-146+158 . 百度学术
    3. 李萌 ,张芹 ,郑舒磊 ,闵俊宁 ,高文浩 ,任皓威 ,刘宁 . 不同壁材对ARA微胶囊理化性质和稳定性的影响. 农业工程学报. 2024(12): 295-303 . 本站查看
    4. 刘丽芳,邱建清,徐芳,施源,曾绍校,胡嘉淼. 声光动力联合杀菌技术对牡蛎的保鲜效果. 农业工程学报. 2023(05): 232-240 . 本站查看
    5. 王思宇,蔡轶男,王宇加,王婷婷,张頔,樊梓鸾. 纳米乳液改善多酚性能及在食品中的应用进展. 现代食品科技. 2023(09): 353-363 . 百度学术
    6. 李志帆,郑树青,李莹莹,胡钰苓,王梦媛,罗登林,许威,金伟平. 姜黄素茶油乳液的制备及其特性. 食品科技. 2021(01): 239-244 . 百度学术
    7. 冯涛,胡中山,曾小兰,张钰,宋诗清,姚凌云,孙敏,徐志民. 辛烯基琥珀酸脱支淀粉-不同构型风味物质包合物的制备及结构表征. 食品科学. 2021(12): 60-66 . 百度学术
    8. 贾前生,刘远洋. 乳铁蛋白基姜黄素纳米载体颗粒的制备及其对大鼠抗疲劳能力的影响. 食品工业科技. 2021(13): 26-32 . 百度学术
    9. 王馨甜,邱洪伟,卢浩,卢晓雪,田耀旗. 不同链长直链糊精-维生素E复合物的制备及稳定性研究. 食品与发酵工业. 2021(13): 119-125 . 百度学术
    10. 张翠央,刘进兵,刘圳,郭照辉,雷平. 姜黄素衍生物及其递药系统的抗癌活性新进展. 安徽化工. 2021(05): 11-15+21 . 百度学术
    11. 曾庆晗,陈帅,高彦祥. 姜黄素乳液的研究进展. 食品工业科技. 2020(01): 341-348 . 百度学术
    12. 邓楚君,许琳霜,李波,杨伟. 天然和热变性乳铁蛋白与姜黄素复合物的结构表征及结合机理研究. 食品工业科技. 2019(16): 32-38+44 . 百度学术
    13. 王勇,许晶,连子腾,郭明辉. 麻疯树籽酶解液纳米乳液体系构建及其稳定性研究. 农业机械学报. 2019(09): 364-372 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  982
  • HTML全文浏览量:  0
  • PDF下载量:  504
  • 被引次数: 15
出版历程
  • 收稿日期:  2018-07-24
  • 修回日期:  2018-12-02
  • 发布日期:  2018-12-31

目录

    /

    返回文章
    返回