[1] |
Mitchell M S. Isolation of curcumin from turmeric[J]. Journal of Chemical Education, 2000, 77(3): 359-360.
|
[2] |
Pizzo P, Scapin C, Vitadello M, et al. Grp94 acts as a mediator of curcumin-induced antioxidant defence in myogenic cells[J]. Journal of Cellular & Molecular Medicine, 2010, 14(4): 970-981.
|
[3] |
Sugiyama Y, Kawakishi S, Osawa T. Involvement of the beta-diketone moiety in the antioxidative mechanism of tetrahydrocurcumin[J]. Biochemical Pharmacology, 1996, 52(4): 519-544.
|
[4] |
Srimal R C, Dhawan B N. Pharmacology of diferuloyl methane (curcumin), a non-steroidal anti-inflammatory agent[J]. Journal of Pharmacy & Pharmacology, 2011, 25(6): 447-452.
|
[5] |
Aggarwal B B, Harikumar K B. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases[J]. International Journal of Biochemistry & Cell Biology, 2009, 41(1): 40-59.
|
[6] |
Lee Y K, Lee W S, Hwang J T, et al. Curcumin exerts antidifferentiation effect through AMPKalpha-PPAR-gamma in 3T3-L1 adipocytes and antiproliferatory effect through AMPKalpha-COX-2 in cancer cells[J]. Journal of Agriculture and Food Chemistry, 2009, 57(1): 305-315.
|
[7] |
Jordan W C, Drew C R. Curcumin:A natural herb with anti-HIV activity[J]. Journal of the National Medical Association, 1996, 88(6): 333.
|
[8] |
De R, Kundu P, Swarnakar S, et al. Antimicrobial activity of curcumin against helicobacter pylori isolates from India and during infections in mice[J]. Antimicrobial Agents & Chemotherapy, 2009, 53(4): 1592-1599.
|
[9] |
Wang Y, Lu Z, Wu H, et al. Study on the antibiotic activity of microcapsule curcumin against foodborne pathogens[J]. International Journal of Food Microbiology, 2009, 136(1): 71-74.
|
[10] |
Jovanovic S V, Boone Charles W, Steenken, et al. How curcumin works preferentially with water soluble antioxidants [J]. Journal of the American Chemical Society, 2001, 123(13): 3064-3072.
|
[11] |
Chignell C F, Bilskj P, Reszka K J, et al. Spectral and photochemical properties of curcumin[J]. Photochemistry & Photobiology, 1994, 59(3): 295-302.
|
[12] |
Yang C, Su X , Liu A , et al. Advances in clinical study of curcumin[J]. Current Pharmaceutical Design, 2013, 19(11): 1966-1973.
|
[13] |
Aggarwal B B, Sung B. Pharmacological basis for the role of curcumin in chronic diseases: An age-old spice with modern targets[J]. Trends in Pharmacological Sciences, 2009, 30(2): 85-94.
|
[14] |
Anand P, Kunnumakkara A B, Newman R A, et al. Bioavailability of curcumin: Problems and promises[J]. Molecular Pharmaceutics, 2007, 4(6): 807-818.
|
[15] |
Freitas R A, Paula R C, Jpa F, et al. Amylose contents, rheological properties and gelatinization kinetics of yam (Dioscorea alata) and cassava (Manihot utilissima) starches[J]. Carbohydrate Polymers, 2004, 55(1): 3-8.
|
[16] |
方晨璐,黄峻榕,任瑞珍,等. 酶解薯类淀粉适用于电镜观察其颗粒表面及内部结构[J]. 农业工程学报,2018,34(22): 306-312.Fang Chenlu, Huang Junrong, Ren Ruizhen, et al. Amylases enzymolysis of tuber starch granules for surface and internal structure observation under scanning electron microscopy[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(22): 306-312. (in Chinese with English abstract)
|
[17] |
Chang R, Yang J, Ge S, et al. Synthesis and self-assembly of octenyl succinic anhydride modified short glucan chains based amphiphilic biopolymer: Micelles, ultrasmall micelles, vesicles, and lutein encapsulation/release[J]. Food Hydrocolloids, 2017, 67: 14-26.
|
[18] |
Fanta G F, Kenar J A, Felker F C. Nanoparticle formation from amylose-fatty acid inclusion complexes prepared by steam jet cooking[J]. Industrial Crops and Products, 2015, 74: 36-44.
|
[19] |
Marinopoulou A, Kalogianni E P, Raphaelides S N. Amylose-fatty acid inclusion complexes as examined by interfacial tension measurements[J]. Colloids Surf B Biointerfaces, 2016, 137: 133-137.
|
[20] |
Le Bail P, Chauvet B, Simonin H, et al. Formation and stability of amylose ligand complexes formed by high pressure treatment[J]. Innovative Food Science & Emerging Technologies, 2013, 18: 1-6.
|
[21] |
Zhu F, Wang Y J. Characterization of modified high-amylose maize starch-α-naphthol complexes and their influence on rheological properties of wheat starch[J]. Food Chemistry, 2013, 138(1): 256-262.
|
[22] |
Ades H, Kesselman E, Ungar Y, et al. Complexation with starch for encapsulation and controlled release of menthone and menthol[J]. LWT - Food Science and Technology, 2012, 45(2): 277-288.
|
[23] |
王永辉,杨晓泉,王金梅,等. 蛋白水解物及多糖负载姜黄素制备纳米颗粒及其稳定性[J]. 农业工程学报,2015,31(10):296-302.Wang Yonghui, Yang Xiaoquan, Wang Jinmei, et al. Preparation of curcumin nanoparticles by protein hydrolysates and polysaccharids and its stabilization[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(10): 296-302. (in Chinese with English abstract)
|
[24] |
Yu H, Huang Q. Investigation of the absorption mechanism of solubilized curcumin using Caco-2 cell monolayers[J]. Journal of Agricultural & Food Chemistry, 2011, 59(17): 9120-9126.
|
[25] |
Yu H, Huang Q. Improving the oral bioavailability of curcumin using novel organogel-based nanoemulsions[J]. Journal of Agricultural & Food Chemistry, 2012, 60(21): 5373-5382.
|
[26] |
杨宝玲,陈烨. 玉米淀粉-辛烯基琥珀酸淀粉酯制备亚麻油微胶囊[J]. 农业工程学报,2010,26(7): 364-368.Yang Baoling, Chen Ye. Preparation of linseed oil microcapsules by starch octenyl succinate-maize starch[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010,26(7): 364-368. (in Chinese with English abstract)
|
[27] |
Sun Q, Li G, Dai L, et al. Green preparation and characterisation of waxy maize starch nanoparticles through enzymolysis and recrystallisation[J]. Food Chemistry, 2014, 162(11): 223-228.
|
[28] |
Aditya N P, Yang H, Kim S, et al. Fabrication of amorphous curcumin nanosuspensions using β-lactoglobulin to enhance solubility, stability, and bioavailability[J]. Colloids & Surfaces B Biointerfaces, 2015, 127: 114-121.
|
[29] |
Gomand S V, Lamberts L, Grommes C J, et al. Molecular and morphological aspects of annealing-induced stabilization of starch crystallites[J]. Biomacromolecules, 2012, 13(5): 1361-1370.
|
[30] |
冯涛,曾小兰,张钰,等. 短链葡聚糖包合姜黄素的分子机制[J]. 现代食品科技,2018, 34(10):111-116.Feng Tao, Zeng Xiaolan, Zhang Yu, et al. Green preparation of short glucan chain and its inclusion behavior of molecular dynamics simulation behavior with curcumin[J]. Modern Food Science and Technology, 2018, 34(10): 111-116. (in Chinese with English abstract)
|
[31] |
Marsh M R A, Waight M S G. The Effect of pH on the Zeta Potential of Wheat and Potato Starch[J]. Starch‐St?rke, 1982, 34(5): 149-152.
|
[32] |
Liu D, Wu Q, Chen H, et al. Transitional properties of starch colloid with particle size reduction from micro- to nanometer [J]. Journal of Colloid & Interface Science, 2009, 339(1): 117.
|
[33] |
Heiati H, Phillips N C, Tawashi R. Evidence for Phospholipid Bilayer Formation in Solid Lipid Nanoparticles Formulated with Phospholipid and Triglyceride[J]. Pharmaceutical Research, 1996, 13(9): 1406-1410.
|
[34] |
Kim H Y, Han J A, Kweon D K, et al. Effect of ultrasonic treatments on nanoparticle preparation of acid-hydrolyzed waxy maize starch[J]. Carbohydrate Polymers, 2013, 93(2): 582-588.
|
[35] |
Sihem Bel Haaj, Magnin Albert. Starch nanoparticles formation via high power ultrasonication[J]. Carbohydrate Polymers, 2013, 92(2): 1625.
|
[36] |
Mansaray K G, Ghaly A E. Determination of kinetic parameters of rice husks in oxygen using thermogravimetric analysis[J]. Biomass & Bioenergy, 1999, 17(1): 19-31.
|
[37] |
苑春苗, 李畅,李刚,等. 氮气气氛下玉米淀粉热分解动力学参数[J]. 东北大学学报: 自然科学版, 2012, 33(4): 584-587.Yuan Chunmiao, Li Chang, Li Gang, et al. Kinetic parameters of thermal decomposition of corn starch under nitrogen atmosphere[J]. Journal of Northeastern University: Natural Science Edition, 2012, 33(4): 584-587. (in Chinese with English abstract)Preparation and structure characterization of short glucan chain-curcumin nano-emulsion
|