高级检索+

水稻气力式播量可调排种器设计与参数优化

邢赫, 臧英, 王在满, 罗锡文, 裴娟, 何思禹, 许鹏, 刘顺财

邢赫, 臧英, 王在满, 罗锡文, 裴娟, 何思禹, 许鹏, 刘顺财. 水稻气力式播量可调排种器设计与参数优化[J]. 农业工程学报, 2019, 35(4): 20-28. DOI: 10.11975/j.issn.1002-6819.2019.04.003
引用本文: 邢赫, 臧英, 王在满, 罗锡文, 裴娟, 何思禹, 许鹏, 刘顺财. 水稻气力式播量可调排种器设计与参数优化[J]. 农业工程学报, 2019, 35(4): 20-28. DOI: 10.11975/j.issn.1002-6819.2019.04.003
Xing He, Zang Ying, Wang Zaiman, Luo Xiwen, Pei Juan, He Siyu, Xu Peng, Liu Shuncai. Design and parameter optimization of rice pneumatic seeding metering device with adjustable seeding rate[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(4): 20-28. DOI: 10.11975/j.issn.1002-6819.2019.04.003
Citation: Xing He, Zang Ying, Wang Zaiman, Luo Xiwen, Pei Juan, He Siyu, Xu Peng, Liu Shuncai. Design and parameter optimization of rice pneumatic seeding metering device with adjustable seeding rate[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(4): 20-28. DOI: 10.11975/j.issn.1002-6819.2019.04.003

水稻气力式播量可调排种器设计与参数优化

基金项目: 国家自然科学基金(31871529);国家重点研发计划(2017YFD07000704);现代农业产业技术体系建设专项资金(CARS-01-41);广东省自然科学基金(S2011010001948)

Design and parameter optimization of rice pneumatic seeding metering device with adjustable seeding rate

  • 摘要: 为了满足杂交水稻播种量不同的要求,该文设计了一种水稻播量可调气力式排种器,对其工作原理进行了分析,对关键部件进行了参数设计,该排种器采用多个相互独立的负压流道对吸种精度进行控制。利用ANSYS-FLUENT有限元流体分析软件对负压流道结构的吸孔负压影响规律进行了分析,优选了最佳流道结构。选取超级杂交稻Y-2优900为试验材料,进行了不同播种量下吸室负压、排种盘转速与排种盘吸孔组数对播种精度的影响试验研究,试验结果表明:当吸孔组数为12、吸种负压为1.6 kPa和排种盘转速为20 r/min时,1孔播种达到最佳效果,合格率为82.41%;当吸孔组数为12、吸种负压为1.6 kPa和排种盘转速为40 r/min时,2孔播种达到最佳效果,合格率为96.36%;当吸孔组数为12、吸种负压为1.6 kPa和排种盘转速为20 r/min时,3孔播种达到最佳效果,合格率为92.79%;当吸孔组数为16、吸种负压为1.2 kPa和排种盘转速为20 r/min时,4孔播种达到最佳效果,合格率为91.93%;当吸孔组数为12、吸种负压为1.6 kPa和排种盘转速为30 r/min时,5孔播种达到最佳效果,合格率为87.88%。说明水稻气力式播量可调排种器可满足杂交稻在采用直播式时不同播量的要求,相比于原有的排种器更佳适应水稻的多样性。该研究可为水稻机械化穴直播技术提供了参考。
    Abstract: The rice mechanized planting level is low in China. The ordinary hybrid rice and the super hybrid rice of high yield population structure can be formed with only 3-5 and 1-3 seeds per hill, respectively. The pneumatic rice precision direct seeding technique is a combination of machinery and air flow. To meet the cultivation requirements of different varieties and seeding rate of hybrid rice, a rice pneumatic seeding metering device with adjustable seeding rate was designed in this study. The working principle of seed metering device was analyzed. This seed metering device adopted multiple independent negative pressure flow-path to control the accuracy of seed suction. The influence of independent negative pressure flow-path structure on suction hole negative pressure was analyzed by ANSYS-FLUENT software. The key components of seed metering device with adjustable seeding rate were designed. The method of adjusting seeding rate was explained. The super hybrid rice Y-2 You 900 was selected as the test object. The average size of the seed was 8.90 mm× 2.20 mm×1.84 mm (length × width × thickness), and the weight of 1 000 grains was 23.8 g. The seeds were washed by water to remove impurities and blighted grain. The dry seeds were soaked in clear water for 24 h. Then, they were moistened, filtered out and dried. The average moisture content was 24.3% (wet basis) before the test. The whole factor experiments were carried out under different negative pressures, rotational speeds of the suction plates, and group number of suction holes. The results showed that when the negative pressure was 1.6 kPa, the optimal group number of suction holes was 12, and rotational speed of the sucking plate was 20 r/min, the optimal qualified rate of 1 hole was 82.41%; when the negative pressure was 1.6 kPa, the optimal group number of suction holes was 12, and rotational speed of the sucking plate was 40 r/min, the optimal qualified rate of 2 holes was 96.36%; when the negative pressure was 1.6 kPa, the optimal group number of suction holes was 12, and rotational speed of the sucking plate was 20 r/min, the optimal qualified rate of 3 holes was 92.79% ; when the negative pressure was 1.2 kPa, the optimal group number of suction holes was 16, and rotational speed of the sucking plate was 20 r/min, the optimal qualified rate of 4 holes was 91.93% ; when the negative pressure was 1.6 kPa, the optimal group number of suction holes was 12, and rotational speed of the sucking plate was 30 r/min, the optimal qualified rate of 5 holes was 87.88%. It also showed that a rice pneumatic seeding metering device with adjustable seeding rate could meet the requirements of different seeding rate for hybrid rice in direct seeding. Compared with the original seed metering device, this seeding metering device is more suitable to rice diversity, which provides a certain reference for rice mechanized direct seeding technology.
  • [1] Zhang M H, Wang Z M, Luo X W, et al. Review of precision rice hill-drop drilling technology and machine for paddy[J]. Int J Agric & Biol Eng, 2018, 11(3): 1-11.
    [2] 汪懋华. 中国农业机械化年鉴[EB/OL]. (2016-12-02) [2018-07-11]. http://www.stats.gov.cn/tjsj/ndsj/2016/ indexch.htm.
    [3] 张洪程,龚金龙. 中国水稻种植机械化高产农艺研究现状及发展探[J]. 中国农业科学,2014,47(7):1273-1289.Zhang Hongcheng, Gong Jinlong. Research status and development discussion on high-yielding agronomy of mechanized planting rice in China[J]. Scientia Agricultural Sinica, 2014, 47(7): 1273-1289. (in Chinese with English abstract)
    [4] 郑天翔,唐湘如,罗锡文,等. 不同灌溉方式对精量穴直播超级稻产生的影响[J]. 农业工程学报,2010,26(8):52-55.Zheng Tianxiang, Tang Xiangru, Luo Xiwen, et al. Effects of different irrigation methods on production of precision hill-direct-seeding super rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(8): 52-55. (in Chinese with English abstract)
    [5] Farooq M, Siddique K H M, Rehman H, et al. Rice direct seeding: Experiences, challenges and opportunities[J]. Soil & Tillage Research, 2011,111: 87-98.
    [6] Chauhan B S, Awan T H, Abugho S B, et al. Effect of crop establishment methods and weed control treatments on weed management, and rice yield[J]. Field Crops Research, 2015, 172: 72-84.
    [7] Wu Z G, Tang D, Liu K, et al. Characterization of a new semi-dominant dwarf allele of SLR1 and its potential application in hybrid rice breeding[J]. Journal of experimental botany, 2018, 6(28): 1-11.
    [8] Wang X B, Wang S Q, Chen J H, et al. Simulating potential yields of Chinese super hybrid rice in Bangladesh, India and Myanmar with EPIC mode[J]. Journal of Geographical Sciences. 2018, 28(7): 1020-1036.
    [9] Liao Y T, Wang L, Liao Q X. Design and test of an inside-filling pneumatic precision centralized seed-metering device for rapeseed[J]. Int J Agric & Biol Eng, 2017, 10(2): 56-62.
    [10] Ismet O, Degirmencioglu A, Yazgi A. An evaluation of seed spacing accuracy of a vacuum type precision metering unit based on theoretical considerations and experiments[J]. Turkish Journal of Agriculture and Forestry, 2012, 36: 133-144.
    [11] Gaikwad B B, Sirohi N P S. Design of a low-cost pneumatic seeder for nursery plug trays[J]. Biosystems Engineering, 2008, 99(10): 322-329.
    [12] Yasir S H. Design and Test of a Pneumatic Precision Metering Device For Wheat[D]. Wuhan: Huazhong Agricultural University, 2011.
    [13] Yazgi A, Degirmencioglu A. Measurement of seed spacing uniformity performance of a precision metering unit as function of the number of holes on vacuum plate[J]. Measurement, 2014, 56(6): 128-135.
    [14] Yazgi A, Degirmencioglu A, Onal I, et al. Mathematical modeling and optimization of the performance of a metering unit for precision corn seeding[J]. Journal of Agricultural Machine Science, 2010, 6(2): 107-113.
    [15] Jack D S, Hesterman D C, Guzzomi A. Precision metering of Santalum spicatum (Australian Sandalwood) seeds[J]. Biosystems Engineering, 2013, 115(3): 171-183.
    [16] Karayel D. Performance of a modified precision vacuum seeder for no-till sowing of maize and soybean[J]. Soil & Tillage Research, 2009, 104(2): 121-125.
    [17] Karayel D, Barut Z B, Ozmerzi A. Mathematical modeling of vacuum pressure on a precision seeder[J]. Biosystems Engineering, 2004, 87(4): 437-444.
    [18] Karayel D, Wiesehoff M, Zmerz A O, et al. Laboratory measurement of seed drill seed spacing and velocity of fall of seeds using high-speed camera system[J]. Computers and Electronics in Agriculture, 2006, 50(2): 89-96.
    [19] Xing H, Luo X W, Zang Y, et al. General structure design and field experiment of pneumatic rice direct-seeder[J]. Int J Agric & Biol Eng, 2017; 10(6): 31-42.
    [20] 邢赫,臧英,王在满,等. 水稻气力式排种器分层充种室的设计与试验[J]. 农业工程学报,2015,31(4):42-48.Xing He, Zang Ying, Wang Zaiman, et al. Design and experiment of filling seed stratified room on rice pneumatic metering device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(4): 42-48. (in Chinese with English abstract)
    [21] 臧英,邢赫,王在满,等. 水稻气力式排种器挡种装置设计与试验[J].农业机械学报,2015,46(5):33-38.Zang Ying, Xing He, Wang Zaiman, et al. Design and experiment of shield device on rice pneumatic metering device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(5): 33-38. (In Chinese with English abstract)
    [22] 邢赫,臧英,曹晓曼,等. 水稻气力式排种器投种轨迹试验与分析[J]. 农业工程学报,2015,31(12):23-30.Xing He, Zang Ying, Cao Xiaoman, et al. Experiment and analysis of dropping trajectory on rice pneumatic metering device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(12): 23-30. (in Chinese with English abstract)
    [23] 邢赫,王在满,罗锡文,等. 气力式水稻穴播机播种精度与田间成苗率关系的试验研究[J]. 农业工程学报,2018,34(9):42-48.Xing He, Wang Zaiman, Luo Xiwen, et al. Experimental study of seeding precision and germination rate in the field of pneumatic rice seeder[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(9): 42-48. (in Chinese with English abstract)
    [24] Maleki M R, Jafari J F, Raufat M H, et al. Evaluation of seed distribution uniformity of a multi-flight auger as a grain drill metering device[J]. Biosystems Engineering, 2006, 94 (4): 535-543.
    [25] 田立权,王金武,唐汉,等. 螺旋槽式水稻穴直播排种器设计与性能试验[J]. 农业机械学报,2016,47(5):46-52.Tian Liquan, Wang Jinwu, Tang Han, et al. Design and performance experiment of helix grooved rice seeding device[J]. Transactions of the Chinese Society Agricultural Machinery(Transactions of the CSAM), 2016, 47(5): 46-52.(in Chinese with English abstract)
    [26] 张明华,罗锡文,王在满,等. 水稻直播机组合型孔排种器设计与试验[J]. 农业机械学报,2016,47(9):29-36.Zhang Minghua, Luo Xiwen, Wang Zaiman, et al. Design and experiment of combined hole-type metering device of rice hill-drop drilling machine[J]. Transactions of the Chinese Society Agricultural Machinery (Transactions of the CSAM), 2016, 47(9): 29-36. (in Chinese with English abstract)
    [27] 张明华,王在满,罗锡文,等. 水稻精量穴直播机开沟装置的设计与试验[J]. 农业工程学报,2017,33(5):10-15.Zhang Minghua, Wang Zaiman, Luo Xiwen, et al. Design and experiment of furrowing device of precision hill-drop drilling machine for rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(5): 10-15. (in Chinese with English abstract)
    [28] 王在满,邢赫,臧英,等.一种播量可调的气力式排种器:107318318A[P]. 2017-11-07.
    [29] 张德文. 精密播种机械[M]. 北京:农业出版社,1982.
    [30] 全国农业机械标准化技术委员会. 单粒(精密)播种机试验方法: GB-T 6973-2005[S].中国国家标准化管理委员会,2005.
  • 期刊类型引用(15)

    1. 罗海峰,刘光辉,吴明亮,张和,王成伟,蒋啸虎. 外凸扰种仿形型孔气吸式水稻芽种精量排种器设计与试验. 农业机械学报. 2025(03): 227-239 . 百度学术
    2. 李贵川,李海宇,杨少鹏,黄玉祥,高筱钧,付作立. 基于CFD-DEM耦合的不同出口形式气力集排系统分配器仿真与试验(英文). 智能化农业装备学报(中英文). 2024(01): 1-11 . 百度学术
    3. 臧英,黄子顺,秦伟,何思禹,钱诚,姜有聪,陶婉琰,张美林,王在满. 气吸式杂交稻单粒排种器研制. 农业工程学报. 2024(06): 181-191 . 本站查看
    4. 赵烁,杨发展,李玉环,宋泉,隋潇斌,杨宇,刘朝伟. 水稻精量直播排种器研究进展. 江苏农业科学. 2024(13): 13-21 . 百度学术
    5. 李骅,马云龙,於海明,王永健,孙新平,尹家巧. 群组吸孔气吸式芹菜排种器设计与试验. 农业机械学报. 2023(03): 87-95 . 百度学术
    6. 秦伟,王在满,王钰静,钱诚,何思禹,张明华,臧英. 气吸式播种机多分支汇流管路气压损失分析与试验. 农业工程学报. 2023(10): 1-14 . 本站查看
    7. 章鑫鹏,郑乐,张富贵. 国内气力式精密排种器研究综述. 农业装备与车辆工程. 2022(09): 93-97+113 . 百度学术
    8. 臧英,何思禹,王在满,刘顺财,王绪国,文智强. 气力式包衣杂交稻单粒排种器研制. 农业工程学报. 2021(01): 10-18 . 本站查看
    9. 刘俊,朱德泉,于从羊,薛康,张顺,廖娟. 舀勺型孔轮式水稻精量排种器设计与试验. 浙江农业学报. 2021(04): 739-752 . 百度学术
    10. 温翔宇,贾洪雷,张胜伟,袁洪方,王刚,陈天佑. 基于EDEM-Fluent耦合的颗粒肥料悬浮速度测定试验. 农业机械学报. 2020(03): 69-77 . 百度学术
    11. 戴亿政,罗锡文,张明华,兰峰,周玉姣,王在满. 气吹集排式水稻旱直播机关键部件设计与试验. 农业工程学报. 2020(10): 1-8 . 本站查看
    12. 李兆东,杨文超,武尧尧,何顺,王韦韦,陈黎卿. 油菜气力盘式精量排种器槽齿辅助充种性能分析与试验. 农业工程学报. 2020(20): 57-66 . 本站查看
    13. 邢赫,张国忠,韩宇航,高原,查显涛. 双腔气力式水稻精量水田直播机设计与试验. 农业工程学报. 2020(24): 29-37 . 本站查看
    14. 张顺,杨继涛,李勇,廖娟,李兆东,朱德泉. 水稻内充气力式精量穴直播排种器吸种性能试验. 浙江农业学报. 2019(08): 1379-1387 . 百度学术
    15. 卢彩云,李洪文,何进,王庆杰,张宇帆,黄圣海. 间歇式自动取样条播排种器排种性能检测试验台研制. 农业工程学报. 2019(24): 10-19 . 本站查看

    其他类型引用(21)

计量
  • 文章访问数:  1550
  • HTML全文浏览量:  0
  • PDF下载量:  640
  • 被引次数: 36
出版历程
  • 收稿日期:  2018-10-06
  • 修回日期:  2019-02-09
  • 发布日期:  2019-02-14

目录

    /

    返回文章
    返回