高级检索+

多通道深度可分离卷积模型实时识别复杂背景下甜菜与杂草

孙俊, 谭文军, 武小红, 沈继锋, 芦兵, 戴春霞

孙俊, 谭文军, 武小红, 沈继锋, 芦兵, 戴春霞. 多通道深度可分离卷积模型实时识别复杂背景下甜菜与杂草[J]. 农业工程学报, 2019, 35(12): 184-190. DOI: 10.11975/j.issn.1002-6819.2019.12.022
引用本文: 孙俊, 谭文军, 武小红, 沈继锋, 芦兵, 戴春霞. 多通道深度可分离卷积模型实时识别复杂背景下甜菜与杂草[J]. 农业工程学报, 2019, 35(12): 184-190. DOI: 10.11975/j.issn.1002-6819.2019.12.022
Sun Jun, Tan Wenjun, Wu Xiaohong, Shen Jifeng, Lu Bing, Dai Chunxia. Real-time recognition of sugar beet and weeds in complex backgrounds using multi-channel depth-wise separable convolution model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(12): 184-190. DOI: 10.11975/j.issn.1002-6819.2019.12.022
Citation: Sun Jun, Tan Wenjun, Wu Xiaohong, Shen Jifeng, Lu Bing, Dai Chunxia. Real-time recognition of sugar beet and weeds in complex backgrounds using multi-channel depth-wise separable convolution model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(12): 184-190. DOI: 10.11975/j.issn.1002-6819.2019.12.022

多通道深度可分离卷积模型实时识别复杂背景下甜菜与杂草

基金项目: 国家自然科学基金资助项目(No.31471413);江苏高校优势学科建设工程资助项目PAPD(苏政办发2011 6号);江苏省六大人才高峰资助项目(ZBZZ-019)。

Real-time recognition of sugar beet and weeds in complex backgrounds using multi-channel depth-wise separable convolution model

  • 摘要: 针对实际复杂田间环境下杂草与作物识别精度低和实时性差的问题,为减少弱光环境对分割识别效果的影响,实现甜菜与杂草的实时精确分割识别,该文首先将可见光图像进行对比度增强,再将近红外与可见光图像融合为4通道图像;将深度可分离卷积以及残差块构成分割识别模型的卷积层,减少模型参数量及计算量,构建编码与解码结构并融合底层特征,细化分割边界。以分割识别精度、参数量以及运行效率为评价指标,通过设置不同宽度系数以及输入图像分辨率选出最优模型。试验结果表明:本文模型的平均交并比达到87.58%,平均像素准确率为99.19%,帧频可达42.064帧/s,参数量仅为525 763,具有较高分割识别精度和较好实时性。该方法有效实现了甜菜与杂草的精确实时识别,可为后续机器人精确除草提供理论参考。
    Abstract: Abstract: Mechanical weeding can reduce the use of pesticides and is of great significance to ensure high yield of crops. Real-time and accurate identification of crops is a key technical problem needs to be solved in mechanical weeding equipment. Because of the subjectivity of feature extraction process in weed recognition, the accuracy of traditional methods in actual field environment is low. In recent years, the method of weed identification based on convolution neural network has been widely studied. Although the accuracy is obviously improved, there are still problems such as large parameters and poor real-time performance. In order to solve the above problems, a four-channel input image is constructed by collecting near infrared and visible images of sugar beet in the field, and a lightweight convolution neural network based on codec structure is proposed. In this paper, Sugarbeet and weed images collected from a farm in Bonn, Germany, in 2016 were used as data sets, which covered images of different growth stages of sugar beet, and 226 pictures of which were randomly selected as training sets, and the remaining 57 pictures were used as test sets. The experimental data set was composed of three channels of visible light image and one channel of near infrared image, which are merged into a four-channel image by pixel level superposition, and the depth-wise separable convolution was used in the deep model. Firstly, the input feature image was convoluted in 2 dimensions convolution kernel and the number of channels was expanded. Then, the 1×1 convolution kernel was used to make the 3 dimensions convolution which combined channel feature and compressed the channels to enhance the nonlinear mapping ability of the model. In order to avoid the problem of the gradient disappearing, the residual block was used to connect the input and output of the depth-wise separate convolution. Finally, the coding and decoder structure was designed and the shallow features were combined with deep features to refine the segmentation effect. Due to the imbalance of pixel proportions of soil, crops and weeds, the weighted loss function was used to optimize the model. The segmentation accuracy, parameters and operating efficiency of models at different input resolutions and different width factor were introduced to evalute the model. When the width factor was 1, the segmentation accuracy of the model increased with the increase of the input image resolution, the model accuracy of four channel input was higher than that of the model based on original visible image input, which showed that the near-infrared image features can compensate the defects of ordinary RGB images to some extent, and make the model more suitable for the dark environment. Under the same input image resolution, the model with a width factor of 2 or 4 performs better than the model with a width factor of 1. With the increases of width factor, the parameters of the model increase greatly. The amount of calculation is related to the size of the input image, so the frame rate gradually decreases with the increase of the size of input image. The experimental results show that the optimal model in this paper is a four channel input model with a width coefficient of 2, and the average intersection union ration is 87.58%, the average pixel accuracy is 99.19%, the parameters are 525 763 and the frame rate is 42.064 frames/s. The model has high segmentation and recognition accuracy and good real-time performance, and can provide theoretical basis for the development of intelligent mechanization weeding equipment.
  • [1] 齐月,李俊生,闫冰,等. 化学除草剂对农田生态系统野生植物多样性的影响[J]. 生物多样性,2016,24(2):228-236.Qi Yue, Li Junsheng, Yan Bing, et al. Impact of herbicides on wild plant diversity in agro-ecosystems: A review[J]. Biodiversity Science, 2016, 24(2): 228-236. (in Chinese with English abstract)
    [2] 杨靓,刘小娟,郭玉双. 农药残留快速检测技术研究进展[J]. 黑龙江农业科学,2012(10):150-153.Yang Liang, Liu Xiao juan, Guo Yu shuang. Progress of rapid detecting technique of pesticide residues[J]. Heilongjiang Agricultural Sciences, 2012(10): 150-153. (in Chinese with English abstract)
    [3] 侯学贵,陈勇,郭伟斌. 除草机器人田间机器视觉导航[J]. 农业机械学报,2008,39(3):106-108.Hou Xuegui, Chen Yong, Guo Weibin. Machine vision-based navigation for a weeding robot[J]. Transactions of The Chinese Society For Agricultural Machinery, 2008, 39(3): 106-108. (in Chinese with English abstract)
    [4] 李碧青,朱强,郑仕勇,等. 杂草自动识别除草机器人设计--基于嵌入式Web和ZigBee网关[J]. 农机化研究, 2017,39(1):217-221.Li Biqing, Zhu Qiang, Zheng Shiyong, et al. Design for weeding robot based on embedded web and zigBee gateway[J]. Journal of Agricultural Mechanization Research, 2017, 39(1): 217-221. (in Chinese with English abstract)
    [5] 李谦,蔡晓华. 机器视觉在除草机器人中的应用[J]. 农机化研究,2014(7):204-206.Li Qian, Cai Xiaohua. Application of machine vision in weeding robot[J]. Journal of Agricultural Mechanization Research, 2014(7): 204-206. (in Chinese with English abstract)
    [6] 张文莉,陈树人,褚德宏. 除草机器人研究现状与趋势[J]. 农业装备技术,2015,41(2):6-10.Zhang Wenli, Chen Shuren, Zhu Dehong. Research review on field weeding robot[J]. Agricultural Equipment & Technology, 2015, 41(2): 6-10. (in Chinese with English abstract)
    [7] 孙俊,芦兵,毛罕平. 基于双目识别技术的复杂背景中果实识别试验[J]. 江苏大学学报:自然科学版,2011,32(4):423-427.Sun Jun, Lu Bing, Mao Hanping. Fruits recognition in complex background using binocular stereovision[J]. Journal of Jiangsu University: Natural Science Edition, 2011, 32(4): 423-427. (in Chinese with English abstract)
    [8] 司永胜,乔军,刘刚,等. 基于机器视觉的苹果识别和形状特征提取[J]. 农业机械学报,2009,40(8):161-165.Si Yongsheng, Qiao Jun, Liu Gang, et al. Recognition and shape features extraction of apples based on machine vision[J]. Transactions of The Chinese Society For Agricultural Machinery, 2009, 40(8): 161-165. (in Chinese with English abstract)
    [9] 何东健,乔永亮,李攀,等. 基于SVM-DS多特征融合的杂草识别[J]. 农业机械学报,2013,44(2):182-187.He Dongjian, Qiao Yongliang, Li Pan, et al. Weed recognition based on SVM-DS multi-feature fusion[J]. Transactions of The Chinese Society For Agricultural Machinery, 2013, 44(2): 182-187. (in Chinese with English abstract)
    [10] 赵川源,何东健,乔永亮. 基于多光谱图像和数据挖掘的多特征杂草识别方法[J]. 农业工程学报,2013,29(2):192-198.Zhao Chuanyuan, He Dongjian, Qiao Yongliang. Identification method of multi-feature weed based on multi-spectral images and data mining[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(2): 192-198. (in Chinese with English abstract)
    [11] Pulido C, Solaque L, Velasco N. Weed recognition by SVM texture feature classification in outdoor vegetable crop images[J]. Ingeniería e Investigación, 2017, 37(1): 68-74.
    [12] Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[C]// Advances in Neural Information Processing Systems,2012: 1097-1105.
    [13] 孙俊,谭文军,毛罕平,等. 基于改进卷积神经网络的多种植物叶片病害识别[J]. 农业工程学报,2017,33(19):209-215.Sun Jun, Tan Wenjun, Mao Hanping, el at. Recognition of multiple plant leaf diseases based on improved convolutional neural network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(19): 209-215. (in Chinese with English abstract)
    [14] Lecun Y, Bengio Y.Convolutional networks for images, speech, and time series[M]//The Handbook of Brain Theory and Neural Networks.MIT Press, 1998.
    [15] Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C]//IEEE Computer Society. IEEE Conference on Computer Vision and Pattern Recognition, 2014.
    [16] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016.
    [17] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]// Computer Vision and Pattern Recognition. IEEE, 2015.
    [18] Chen L C, Papandreou G, Kokkinos I, et al. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs[J]. IEEE transactions on pattern analysis and machine intelligence, 2018, 40(4): 834-848.
    [19] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 2013.
    [20] Ren S, He K, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[C]// International Conference on Neural Information Processing Systems. MIT Press, 2015.
    [21] 王璨,武新慧,李志伟. 基于卷积神经网络提取多尺度分层特征识别玉米杂草[J]. 农业工程学报,2018,34(5):144-151.Wang Can, Wu Xinhui, Li Zhiwei. Recognition of maize and weed based on multi-scale hierarchical features extracted by convolutional neural network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(5): 144-151. (in Chinese with English abstract)
    [22] 孙俊,何小飞,谭文军,等. 空洞卷积结合全局池化的卷积神经网络识别作物幼苗与杂草[J]. 农业工程学报,2018,34(11):159-165.Sun Jun, He Xiaofei, Tan Wenjun, et al. Recognition of crop seedling and weed recognition based on dilated convolution and global pooling in CNN[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(11): 159-165. (in Chinese with English abstract)
    [23] Tang J L, Wang D, Zhang Z G, et al. Weed identification based on K-means feature learning combined with convolutional neural network[J]. Computers and electronics in agriculture, 2017, 135: 63-70.
    [24] Milioto A, Lottes P, Stachniss C. Real-time semantic segmentation of crop and weed for precision agriculture robots leveraging background knowledge in CNNs[C]//2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018.
    [25] Chebrolu N, Lottes P, Schaefer A, et al. Agricultural robot dataset for plant classification, localization and mapping on sugar beet fields[J]. The International Journal of Robotics Research, 2017, 36(10): 1045-1052.
    [26] Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv: 1704. 04861, 2017.
    [27] Badrinarayanan V, Kendall A, Cipolla R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation[J]. arXiv preprint arXiv: 1511. 00561, 2015.
    [28] Paszke A, Chaurasia A, Kim S, et al. Enet: A deep neural network architecture for real-time semantic segmentation[J]. arXiv preprint arXiv: 1606. 02147, 2016.
    [29] Milioto A, Stachniss C. Bonnet: An open-source training and deployment framework for semantic segmentation in robotics using CNNs[J]. arXiv preprint arXiv: 1802. 08960, 2018.
    [30] Redmon J, Farhadi A. Yolov3: An incremental improvement[J]. arXiv preprint arXiv: 1804. 02767, 2018.
  • 期刊类型引用(29)

    1. 项新建,肖家乐,汤卉,胡海斌,张颖超,袁天顺. 基于改进BiSeNetV2的甜菜与杂草识别方法研究. 中国农机化学报. 2025(04): 101-107 . 百度学术
    2. 冀汶莉,刘洲,邢海花. 基于YOLO v5的农田杂草识别轻量化方法研究. 农业机械学报. 2024(01): 212-222+293 . 百度学术
    3. 刘冬,李庭鑫,杜宇,丛明. 基于MCA-YOLO的轻量级红外实时目标检测算法. 华中科技大学学报(自然科学版). 2024(03): 35-40+46 . 百度学术
    4. 黄书琴,黄福乐,罗柳茗,覃锋,李岩舟. 基于Faster R-CNN的蔗田杂草检测算法研究. 中国农机化学报. 2024(06): 208-215 . 百度学术
    5. 亢洁,代鑫,刘文波,徐婷,夏宇. 基于改进YOLO v8n的玉米田间杂草检测网络. 江苏农业科学. 2024(20): 165-172 . 百度学术
    6. 李凯雨,张慧,马浚诚,张领先. 基于语义分割和可见光谱图的作物叶部病斑分割方法. 光谱学与光谱分析. 2023(04): 1248-1253 . 百度学术
    7. 周佳良,王金鹏,张跃跃,胡皓若. 基于GCAM-YOLOv5的火龙果快速检测方法. 林业工程学报. 2023(03): 141-149 . 百度学术
    8. 付豪,赵学观,翟长远,郑康,郑申玉,王秀. 基于深度学习的杂草识别方法研究进展. 中国农机化学报. 2023(05): 198-207 . 百度学术
    9. 杨志文,张合兵,都伟冰,潘怡莎. 基于CBAM-Res-HybridSN的高光谱图像分类研究. 航天返回与遥感. 2023(03): 85-96 . 百度学术
    10. 蔡雨霖,肖佳仪,余超然,宋钊,李静,岳学军. 基于UANP-MT的半监督菜心杂草分割方法. 农业工程学报. 2023(11): 183-191 . 本站查看
    11. 金小俊,孙艳霞,于佳琳,陈勇. 基于深度学习与图像处理的蔬菜苗期杂草识别方法. 吉林大学学报(工学版). 2023(08): 2421-2429 . 百度学术
    12. 罗昌志,李维华,周进,邸志峰,向阳,朱正波. 机器视觉在大蒜生产中的应用现状与研究进展. 农业装备与车辆工程. 2023(11): 7-11 . 百度学术
    13. 冯祥,张学林,王建雄. 基于改进空间-协调注意力UNet的多作物分类提取. 农业工程学报. 2023(18): 132-141 . 本站查看
    14. 徐国钦,黄明凤,黄建平. 基于改进语义分割模型的无人机多光谱图像杂草分割. 江苏农业科学. 2022(12): 212-220 . 百度学术
    15. 郑光,魏家领,任艳娜,刘合兵,席磊. 基于深度可分离与空洞卷积的轻量化小麦生育进程监测模型研究. 江苏农业科学. 2022(20): 226-232 . 百度学术
    16. 王璨,武新慧,张燕青,王文俊. 基于移位窗口Transformer网络的玉米田间场景下杂草识别. 农业工程学报. 2022(15): 133-142 . 本站查看
    17. 方璇,金小俊,陈勇. 基于人工智能的作物与草坪杂草识别研究进展. 林业机械与木工设备. 2022(10): 30-36 . 百度学术
    18. 孙俊,宫东见,姚坤杉,芦兵,戴春霞,武小红. 基于通道特征金字塔的田间葡萄实时语义分割方法. 农业工程学报. 2022(17): 150-157 . 本站查看
    19. 李鹏,刘翔鹏,李彦明,刘成良. 基于双通道阈值分割和CNN的田间绿芦笋视觉识别. 农机化研究. 2021(07): 19-25 . 百度学术
    20. 王红,陈功平. 基于PCAW-UNet的田间杂草实时分割. 西安文理学院学报(自然科学版). 2021(02): 27-37 . 百度学术
    21. 李玉华,刘全程,李天华,吴彦强,牛子孺,侯加林. 基于Jetson Nano处理器的大蒜鳞芽朝向调整装置设计与试验. 农业工程学报. 2021(07): 35-42 . 本站查看
    22. 张先洁,孙国祥,汪小旵,杨海慧,魏天翔. 基于超像素特征向量的果树冠层分割方法. 江苏农业学报. 2021(03): 724-730 . 百度学术
    23. 张伟荣,温浩军,谯超凡,汪光岩. 基于Mask R-CNN的玉米苗与株芯检测方法. 新疆农业科学. 2021(10): 1918-1928 . 百度学术
    24. 孙俊,朱伟栋,罗元秋,沈继锋,陈义德,周鑫. 基于改进MobileNet-V2的田间农作物叶片病害识别. 农业工程学报. 2021(22): 161-169 . 本站查看
    25. 孙俊,杨锴锋,罗元秋,沈继锋,武小红,钱磊. 基于无人机图像的多尺度感知麦穗计数方法. 农业工程学报. 2021(23): 136-144 . 本站查看
    26. 苗荣慧,杨华,武锦龙,刘昊宇. 基于图像分块及重构的菠菜重叠叶片与杂草识别. 农业工程学报. 2020(04): 178-184 . 本站查看
    27. 孙红,李松,李民赞,刘豪杰,乔浪,张瑶. 农业信息成像感知与深度学习应用研究进展. 农业机械学报. 2020(05): 1-17 . 百度学术
    28. 刘连忠,李孟杰,宁井铭. 基于改进SLIC的光照干扰下茶树冠层图像分割. 江苏农业学报. 2020(04): 1022-1027 . 百度学术
    29. 王金鹏,高凯,姜洪喆,周宏平. 基于改进的轻量化卷积神经网络火龙果检测方法(英文). 农业工程学报. 2020(20): 218-225 . 本站查看

    其他类型引用(27)

计量
  • 文章访问数:  1238
  • HTML全文浏览量:  0
  • PDF下载量:  669
  • 被引次数: 56
出版历程
  • 收稿日期:  2018-10-20
  • 修回日期:  2019-03-05
  • 发布日期:  2019-06-14

目录

    /

    返回文章
    返回