[1] |
齐月,李俊生,闫冰,等. 化学除草剂对农田生态系统野生植物多样性的影响[J]. 生物多样性,2016,24(2):228-236.Qi Yue, Li Junsheng, Yan Bing, et al. Impact of herbicides on wild plant diversity in agro-ecosystems: A review[J]. Biodiversity Science, 2016, 24(2): 228-236. (in Chinese with English abstract)
|
[2] |
杨靓,刘小娟,郭玉双. 农药残留快速检测技术研究进展[J]. 黑龙江农业科学,2012(10):150-153.Yang Liang, Liu Xiao juan, Guo Yu shuang. Progress of rapid detecting technique of pesticide residues[J]. Heilongjiang Agricultural Sciences, 2012(10): 150-153. (in Chinese with English abstract)
|
[3] |
侯学贵,陈勇,郭伟斌. 除草机器人田间机器视觉导航[J]. 农业机械学报,2008,39(3):106-108.Hou Xuegui, Chen Yong, Guo Weibin. Machine vision-based navigation for a weeding robot[J]. Transactions of The Chinese Society For Agricultural Machinery, 2008, 39(3): 106-108. (in Chinese with English abstract)
|
[4] |
李碧青,朱强,郑仕勇,等. 杂草自动识别除草机器人设计--基于嵌入式Web和ZigBee网关[J]. 农机化研究, 2017,39(1):217-221.Li Biqing, Zhu Qiang, Zheng Shiyong, et al. Design for weeding robot based on embedded web and zigBee gateway[J]. Journal of Agricultural Mechanization Research, 2017, 39(1): 217-221. (in Chinese with English abstract)
|
[5] |
李谦,蔡晓华. 机器视觉在除草机器人中的应用[J]. 农机化研究,2014(7):204-206.Li Qian, Cai Xiaohua. Application of machine vision in weeding robot[J]. Journal of Agricultural Mechanization Research, 2014(7): 204-206. (in Chinese with English abstract)
|
[6] |
张文莉,陈树人,褚德宏. 除草机器人研究现状与趋势[J]. 农业装备技术,2015,41(2):6-10.Zhang Wenli, Chen Shuren, Zhu Dehong. Research review on field weeding robot[J]. Agricultural Equipment & Technology, 2015, 41(2): 6-10. (in Chinese with English abstract)
|
[7] |
孙俊,芦兵,毛罕平. 基于双目识别技术的复杂背景中果实识别试验[J]. 江苏大学学报:自然科学版,2011,32(4):423-427.Sun Jun, Lu Bing, Mao Hanping. Fruits recognition in complex background using binocular stereovision[J]. Journal of Jiangsu University: Natural Science Edition, 2011, 32(4): 423-427. (in Chinese with English abstract)
|
[8] |
司永胜,乔军,刘刚,等. 基于机器视觉的苹果识别和形状特征提取[J]. 农业机械学报,2009,40(8):161-165.Si Yongsheng, Qiao Jun, Liu Gang, et al. Recognition and shape features extraction of apples based on machine vision[J]. Transactions of The Chinese Society For Agricultural Machinery, 2009, 40(8): 161-165. (in Chinese with English abstract)
|
[9] |
何东健,乔永亮,李攀,等. 基于SVM-DS多特征融合的杂草识别[J]. 农业机械学报,2013,44(2):182-187.He Dongjian, Qiao Yongliang, Li Pan, et al. Weed recognition based on SVM-DS multi-feature fusion[J]. Transactions of The Chinese Society For Agricultural Machinery, 2013, 44(2): 182-187. (in Chinese with English abstract)
|
[10] |
赵川源,何东健,乔永亮. 基于多光谱图像和数据挖掘的多特征杂草识别方法[J]. 农业工程学报,2013,29(2):192-198.Zhao Chuanyuan, He Dongjian, Qiao Yongliang. Identification method of multi-feature weed based on multi-spectral images and data mining[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(2): 192-198. (in Chinese with English abstract)
|
[11] |
Pulido C, Solaque L, Velasco N. Weed recognition by SVM texture feature classification in outdoor vegetable crop images[J]. Ingeniería e Investigación, 2017, 37(1): 68-74.
|
[12] |
Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[C]// Advances in Neural Information Processing Systems,2012: 1097-1105.
|
[13] |
孙俊,谭文军,毛罕平,等. 基于改进卷积神经网络的多种植物叶片病害识别[J]. 农业工程学报,2017,33(19):209-215.Sun Jun, Tan Wenjun, Mao Hanping, el at. Recognition of multiple plant leaf diseases based on improved convolutional neural network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(19): 209-215. (in Chinese with English abstract)
|
[14] |
Lecun Y, Bengio Y.Convolutional networks for images, speech, and time series[M]//The Handbook of Brain Theory and Neural Networks.MIT Press, 1998.
|
[15] |
Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C]//IEEE Computer Society. IEEE Conference on Computer Vision and Pattern Recognition, 2014.
|
[16] |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016.
|
[17] |
Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]// Computer Vision and Pattern Recognition. IEEE, 2015.
|
[18] |
Chen L C, Papandreou G, Kokkinos I, et al. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs[J]. IEEE transactions on pattern analysis and machine intelligence, 2018, 40(4): 834-848.
|
[19] |
Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 2013.
|
[20] |
Ren S, He K, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[C]// International Conference on Neural Information Processing Systems. MIT Press, 2015.
|
[21] |
王璨,武新慧,李志伟. 基于卷积神经网络提取多尺度分层特征识别玉米杂草[J]. 农业工程学报,2018,34(5):144-151.Wang Can, Wu Xinhui, Li Zhiwei. Recognition of maize and weed based on multi-scale hierarchical features extracted by convolutional neural network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(5): 144-151. (in Chinese with English abstract)
|
[22] |
孙俊,何小飞,谭文军,等. 空洞卷积结合全局池化的卷积神经网络识别作物幼苗与杂草[J]. 农业工程学报,2018,34(11):159-165.Sun Jun, He Xiaofei, Tan Wenjun, et al. Recognition of crop seedling and weed recognition based on dilated convolution and global pooling in CNN[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(11): 159-165. (in Chinese with English abstract)
|
[23] |
Tang J L, Wang D, Zhang Z G, et al. Weed identification based on K-means feature learning combined with convolutional neural network[J]. Computers and electronics in agriculture, 2017, 135: 63-70.
|
[24] |
Milioto A, Lottes P, Stachniss C. Real-time semantic segmentation of crop and weed for precision agriculture robots leveraging background knowledge in CNNs[C]//2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018.
|
[25] |
Chebrolu N, Lottes P, Schaefer A, et al. Agricultural robot dataset for plant classification, localization and mapping on sugar beet fields[J]. The International Journal of Robotics Research, 2017, 36(10): 1045-1052.
|
[26] |
Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv: 1704. 04861, 2017.
|
[27] |
Badrinarayanan V, Kendall A, Cipolla R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation[J]. arXiv preprint arXiv: 1511. 00561, 2015.
|
[28] |
Paszke A, Chaurasia A, Kim S, et al. Enet: A deep neural network architecture for real-time semantic segmentation[J]. arXiv preprint arXiv: 1606. 02147, 2016.
|
[29] |
Milioto A, Stachniss C. Bonnet: An open-source training and deployment framework for semantic segmentation in robotics using CNNs[J]. arXiv preprint arXiv: 1802. 08960, 2018.
|
[30] |
Redmon J, Farhadi A. Yolov3: An incremental improvement[J]. arXiv preprint arXiv: 1804. 02767, 2018.
|