高级检索+

无人机多光谱遥感反演各生育期玉米根域土壤含水率

Soil water content inversion model in field maize root zone based on UAV multispectral remote sensing

  • 摘要: 为准确及时地获取植被覆盖条件下农田土壤水分信息,该文以不同水分处理的大田玉米为研究对象,利用无人机遥感平台对夏玉米进行多期遥感监测,并同步采集玉米根域不同深度土壤含水率(Soil Water Content,SWC)。基于2018年夏玉米拔节期、抽雄-吐丝期和乳熟-成熟期的无人机多光谱遥感影像数据集,通过支持向量机(Support Vector Machine,SVM)分类剔除土壤背景,提取玉米冠层光谱反射率并计算10种植被指数(Vegetation Index,VI),然后利用全子集筛选(Full Subset Selection)法对不同波段和植被指数进行不同深度土壤含水率的敏感性分析,并分别采用岭回归(Ridge Regression,RR)和极限学习机(Extreme Learning Machine,ELM)2种方法构建全子集筛选后0~20、20~45和45~60 cm不同深度下的土壤含水率定量估算模型。结果表明:基于贝叶斯信息准则(Bayesian Information Criterion,BIC)的全子集筛选法可以有效筛选最优光谱子集,筛选变量基本都通过了显著性检验,自变量个数较少;在同一生育期、同一深度条件下,ELM模型效果均优于RR模型;玉米在拔节期、抽雄-吐丝期的最佳监测深度为0~20 cm,在乳熟-成熟期的最佳监测深度为20~45 cm;乳熟-成熟期的20~45 cm深度下的ELM反演模型效果最优,其建模集和验证集的决定系数Rc2和Rv2分别为0.825和0.750,均方根误差RMSEc和RMSEv分别为1.00%和1.32%,标准均方根误差NRMSEc和NRMSEv分别为10.85%和13.55%。利用全子集筛选法与机器学习相结合的方法可以提高土壤含水率的反演精度和鲁棒性,本研究为快速、准确地监测农田土壤墒情、实施精准灌溉提供了一种新的途径。

     

    Abstract: The rapid acquisition of soil water content (SWC) in field crop root zone is significant for drought supervision and precision irrigation. The UAV multispectral remote sensing system has the advantages of obtaining high spatial-temporal resolution of crop phenotype data, and has a wide application prospect in soil moisture monitoring. In order to obtain SWC accurately and timely at a farm scale, in this paper, the field maize with different water treatments is taken as the research object, and the multispectral remote sensing monitoring of summer maize is carried out by using the UAV remote sensing platform, and the soil water content of different soil depth in maize root zone is collected synchronously. Based on the UAV multispectral remote sensing image data sets of jointing stage, tasseling-silking stage and milky-maturity stage of summer maize in 2018, the soil background is removed by support vector machine classification, the spectral reflection of maize canopy is extracted, and the 10 vegetation indices are calculated, then the sensitivity analysis of soil water content in different depth is carried out by using full subset screening method for different wave bands and vegetation indices, and the soil water content in different depth is analyzed respectively, ridge regression and extreme learning machine are used to construct quantitative estimation models of soil water content at 0-20, 20-45 and 45-60 cm soil depth after full subset selection.The test area is located in Zhaojun Town, Dalate Banner, Ordos, Inner Mongolia, China(40°26'0.29" N, 109°36'25.99" E, elevation 1 010 m). The sowing time of maize is on May 11, 2018, the emergence time is on May 18, and the harvest time is on September 8, 2018. The total growth period is 114 days. The UAV multispectral remote sensing images and ground data collection dates are July 8, July 12, July 17, July 21, July 26, August 2, August 28 and September 7, 2018. It is collected once a day and tested 8 times in the whole growth period. July 8-21 is the jointing stage, July 26-August 2 is the tasseling-silking stage, August 28-september 7 is the milk-maturity stage. The flight altitude of the UAV is 70 m, and the flight time is 11:00-13:00 local time (11:44-13:44 Beijing time). Firstly, the UAV multispectral canopy images of field maize with 5 different irrigation treatments (TRTs) are acquired through the six-rotor UAV equipped with a RedEdge multispectral camera ( MicaSense, USA), and the multispectral images of diffuse reflector (reflectivity 58%, size 3×3 m) are collected at the same height to perform radiometric correction in the meantime, and then the spectral reflectances of the field maize are acquired. Secondly, the support vector machine (SVM) is used to eliminate the multispectral image of soil background in ENVI and ArcGIS software, then the maize canopy spectral reflectance is extracted and 10 vegetation indices (VIs), such as Normalized Difference Vegetation Index (NDVI), Normalized Green Difference Vegetation Index (GNDVI) and Transformed Chlorophyll Absorption In Reflectance Index(TCARI), etc, are calculated. Finally, the full subset selection method based on Bayesian Information Criterion (BIC) is used to analyze the sensitivity of SWC at different depths for different spectra bands and vegetation indices in R3.5.1 software, and then Ridge Regression (RR) as well as Extreme Learning Machine (ELM) are used to construct a quantitative estimation model of SWC at soil depths of 0-20, 20-45 and 45-60 cm at different growth stages, respectively. The results show that the full subset selection method based on BIC can effectively select the optimal spectral subset, and the selected variables generally pass the significance test and the independent variables number is small; the effects of the ELM model outperformed the RR model almost under all the same conditions; the optimal monitoring soil depth of maize at jointing stage, tasseling-silking stage is 0-20 cm, and the optimal monitoring soil depth of milk-maturity stage is 20-45 cm; the ELM inversion model at 20-45 cm soil depth at milk-maturity stage has the best effect, the decision coefficients of modeling set and verification set are 0.825 and 0.750, respectively, the root mean square error are 1.00% and 1.32%, respectively, and the normalized root mean square error are 10.85% and 13.55%, respectively. The combination of full subset selection method and machine learning can improve the inversion accuracy and robustness of SWC. This study provides a new way for rapid and accurate monitoring of SWC in farmland and precise irrigation.

     

/

返回文章
返回