高级检索+

舟山近海海域养殖水体悬浮物沉降特性试验研究

桂福坤, 方帅, 曲晓玉, 张清靖, 张学芬, 冯德军

桂福坤, 方帅, 曲晓玉, 张清靖, 张学芬, 冯德军. 舟山近海海域养殖水体悬浮物沉降特性试验研究[J]. 农业工程学报, 2020, 36(10): 206-212. DOI: 10.11975/j.issn.1002-6819.2020.10.025
引用本文: 桂福坤, 方帅, 曲晓玉, 张清靖, 张学芬, 冯德军. 舟山近海海域养殖水体悬浮物沉降特性试验研究[J]. 农业工程学报, 2020, 36(10): 206-212. DOI: 10.11975/j.issn.1002-6819.2020.10.025
Gui Fukun, Fang Shuai, Qu Xiaoyu, Zhang Qingjing, Zhang Xuefen, Feng Dejun. Experimental study on settling characteristics of suspended solids in seawater of nearshore in Zhoushan of China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(10): 206-212. DOI: 10.11975/j.issn.1002-6819.2020.10.025
Citation: Gui Fukun, Fang Shuai, Qu Xiaoyu, Zhang Qingjing, Zhang Xuefen, Feng Dejun. Experimental study on settling characteristics of suspended solids in seawater of nearshore in Zhoushan of China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(10): 206-212. DOI: 10.11975/j.issn.1002-6819.2020.10.025

舟山近海海域养殖水体悬浮物沉降特性试验研究

基金项目: 国家自然科学基金(31902425);浙江省属高校科研院所基本科研业务费(2019J00030);舟山市科技项目(2018C21011、2020C21003)

Experimental study on settling characteristics of suspended solids in seawater of nearshore in Zhoushan of China

  • 摘要: 了解海水中悬浮物颗粒的静沉降特性,对于海水工厂化养殖的水源处理具有重要指导意义。该研究以舟山长峙岛海域为例,通过2019年7-9月进行的静沉降试验,分析总结水体中悬浮物浓度和粒径分布随时间的变化规律,采用斯托克斯沉速公式和重复深度吸管法计算悬浮物颗粒的沉降速率。结果表明:1)在悬浮物静沉降特性试验中,沉降装置直径的小幅度变化对沉降结果的影响基本可以忽略;2)舟山近海海域表层海水悬浮物的粒径分布属于粉砂范畴,很难通过静沉降的方式完全除去;3)沉降初期,以大颗粒悬浮物沉降为主,沉降速率大;沉降中后期,以小颗粒悬浮物絮凝沉降为主,沉降速率小;4)通过重复深度吸管法计算得到舟山近海海域悬浮物沉降速率范围为0.001~0.01 cm/s,并通过非线性拟合,得到悬浮物平均沉降速率与悬浮物浓度之间的Logistic曲线关系。研究结果可以为舟山近海海域工厂化水产养殖用水悬浮物去除提供数据支撑。
    Abstract: The industrial aquaculture has been widely applied all around the word for its obvious benefits of eco-friendly, water-saving and good welfare conditions due to the excellent use of technology to manage aquaculture environments effectively. Water quality management, mainly composed of sedimentation, filtration, biological purification, oxygenation, temperature regulation and sterilization, is of vital importance to the aquaculture. Generally, sedimentation can be applied to deal with the water before the influence into the aquaculture tank and that after the effluent from the aquaculture tank. Most of the previous studies focused on the settling characteristics of suspended solid in the waste water from the aquaculture tank. However, few attentions are paid to that in the source of water, resulting in limited knowledge on the determination of the appropriate time required for solid sedimentation. In this study, settling characteristics and size distribution of the SS (suspended solid) in the nearshore seawater of Changzhi island, Zhoushan have been investigated by carrying out four hydrostatic settling experiments. In addition, settling apparatus with different diameters have been developed to examine the effect of apparatus diameter on the settling characteristics. Stokes equation and Mclaughlin method have been applied to calculate the settling velocity in the fourth hydrostatic settling experiments. The results show that the accumulating particle size D90 (the accumulating particle volume reaches to 90%) of suspended solids in the seawater of Changzhi island is around 45.800 μm, indicating that the suspended solids are mainly composed of silts. The mass concentration of suspended solids increases sharply with time in the first 22 min due to the quick settlement of large particles, and recoveries to the initial level after 40 min. And it continues to decreases due to the flocculating settling of small particles and reaches the level less than 40% of that in the initial samples 6-9 h later. During the final stage, it decreases slightly, stabilizing at the level of 50-60 mg/L after 12 h. Thus, the settling characteristics demonstrates that it is difficult to completely remove the suspended solids in seawater by increasing settling time and other water management strategy also should be employed. The comparisons of settling characteristics among three purpose-designed settling apparatus show that the effect of apparatus diameter can be ignored in this study. As for the settling velocity, it reaches the maximum value of near 0.01 cm/s in the early stage because of the similar reason that the large particles settle first as in the concentration analysis. In the later stage, the settling velocity decreases rapidly and becomes less than 0.001 cm/s after 6 h. Moreover, the settling velocity and concentration has been fitted in a Logistic model and the fitting equation has been obtained. The results can enrich the understanding of the settling characteristics in the source water for industrial aquaculture in Zhoushan island and provide scientific guidance on how to set up appropriate setting time for source water in settling tank.
  • [1] 杨菁,倪琦,张宇雷,等. 对虾工程化循环水养殖系统构建技术[J]. 农业工程学报,2010,26(8):136-140.Yang Jing, Ni Qi, Zhang Yulei, et al. Construction technology on RAS for shrimp culture[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(8): 136-140. (in Chinese with English abstract)
    [2] 赵乐,张清靖,桂福坤,等. 工厂化对虾养殖池管式射流集污水力特性[J]. 中国水产科学,2017,24(1):190-198.Zhao Le, Zhang Qingjing, Gui Fukun, et al. Experimental study on the hydraulic characteristics of waste concentrated in an industrial aquaculture pond equipped with a pipe jet flow system[J]. Journal of Fishery Sciences of China, 2017, 24(1): 190-198. (in Chinese with English abstract)
    [3] 曲克明. 海水工厂化高效养殖体系构建工程技术[M]. 北京:海军出版社,2010:104-109.
    [4] Douglas R W, Rippey B, Gibson C E, et al. Estimation of the in-situ settling velocity of particles in lakes using a time series sediment trap[J]. Freshwater Biology, 2003, 48(3): 512-518.
    [5] 雷坤,杨作升,郭志刚. 东海陆架北部泥质区悬浮体的絮凝沉积作用[J]. 海洋与湖沼,2001,32(3):288-295.Lei Kun, Yang Zuosheng, Guo Zhigang. Sedimention with aggregation of suspended sediment in a mud area of the Northern East China Sea[J]. Oceanologia Et Limnologia Sinica, 2001, 32(3): 288-295. (in Chinese with English abstract)
    [6] Baldock T E, Tomkins M R, Nielsen P, et al. Settling velocity of sediments at high concentrations[J]. Coastal engineering, 2004, 51(1): 91-100.
    [7] Curran K J, Hill P S, Milligan T G, et al. Settling velocity, effective density, and mass composition of suspended sediment in a coastal bottom boundary layer, Gulf of Lions, France[J]. Continental Shelf Research, 2007, 27(10/11): 1408-1421.
    [8] Jiménez J A, Madsen O S. A simple formula to estimate settling velocity of natural sediments[J]. Journal of waterway, port, coastal, and ocean engineering, 2003, 129(2): 70-78.
    [9] Rosa F. Sedimentation and sediment resuspension in Lake Ontario[J]. Journal of Great Lakes Research, 1985, 11(1): 13-25.
    [10] 向军,逄勇,李一平,等. 浅水湖泊水体中不同颗粒悬浮物静沉降规律研究[J]. 水科学进展,2008,19(1):111-115.Xiang Jun, Pang Yong, Li Yiping, et al. Hydrostatic settling suspended matter of large shallow lake[J]. Advances in Water Science, 2008, 19(1): 111-115. (in Chinese with English abstract)
    [11] Wu J, He C. Experimental and modeling investigation of sewage solids sedimentation based on particle size distribution and fractal dimension[J]. International Journal of Environmental Science & Technology, 2010, 7(1): 37-46.
    [12] 关山月,朱建光,贺超,等. 低浓度生活污水自由沉降规律及其对厌氧发酵的影响[J]. 中国沼气,2017,35(1):9-12.Guan Shanyue, Zhu Jianguang, He Chao, et al. Free sedimentation regulation of low concentration domestic sewage and its effect on anaerobic fermentation[J]. China Biogas, 2017, 35(1): 9-12. (in Chinese with English abstract)
    [13] Magill S, Thetmeyer H, Cromey C J, et al. Settling velocity of faecal pellets of gilthead sea bream (Sparus aurata L.) and sea bass (Dicentrarchus labrax L.) and sensitivity analysis using measured data in a deposition model[J]. Aquaculture, 2006, 251(1): 295-305.
    [14] Reid G K, Liutkus M, Robinson S M C, et al. A review of the biophysical properties of salmonid faeces: Implications for aquaculture waste dispersal models and integrated multi-trophic aquaculture[J]. Aquaculture Research, 2009, 40(3): 257-273.
    [15] Piedecausa M A, Aguado-Giménez F, García-García B, et al. Settling velocity and total ammonia nitrogen leaching from commercial feed and faecal pellets of gilthead seabream (Sparus aurata L. 1758) and seabass (Dicentrarchus labrax L. 1758)[J]. Aquaculture Research, 2009, 40(15): 1703-1714.
    [16] Bao W, Zhu S, Jin G, et al. Generation, characterization, perniciousness, removal and reutilization of solids in aquaculture water: a review from the whole process perspective[J]. Reviews in Aquaculture, 2019, 11(4): 1342-1366.
    [17] 刘长发,徐岩,晏再生,等. 牙鲆养殖循环系统中固体废物的粒径分布与沉降特征[J]. 渔业现代化,2009,36(6):1-5.Liu Changfa, Xu Yan, Yan Zaisheng, et al. Particle size distribution and settling characteristics of solids waste settled in the recirculating aquaculture system for Japanese flounder culture[J]. Fishery Modernization, 2009, 36(6): 1-5. (in Chinese with English abstract)
    [18] 张成林,杨菁,徐皓,等. 去除养殖水体悬浮颗粒的多向流重力沉淀装置设计及性能[J]. 农业工程学报,2015,31(增刊1):53-60.Zhang Chenglin, Yang Jing, Xu Hao, et al. Design and performance of multiway gravity device on removing suspended solids in aquaculture water[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(Supp.1): 53-60. (in Chinese with English abstract)
    [19] 严峻,章霞,李伟业,等. 对虾大棚养殖废水悬浮物静沉降效果初步研究[J]. 浙江海洋学院学报:自然科学版,2017,36(2):186-189.Yan Jun, Zhang Xia, Li Weiye, et al. A preliminary study of the static settling effection on suspended solids of prawn greenhouse aquiculture waste water[J]. Journal of Zhejiang Ocean University: Natural Sciences, 2017, 36(2): 186-189. (in Chinese with English abstract)
    [20] 季明东,李海军,李建平,等. 乌龟温室养殖水中悬浮颗粒物的沉降特性[J]. 农业工程学报,2018,34(21):222-227.Ji Mingdong, Li Haijun, Li Jianping, et al. Settling characteristics of suspended solids in greenhouse turtle aquaculture water[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(21): 222-227. (in Chinese with English abstract)
    [21] 袁新程,施永海,刘永士. 池塘养殖废水自由沉降及其三态氮、总氮和总磷含量变化[J]. 广东海洋大学学报,2019,39(4):56-62.Yuan Xincheng, Shi Yonghai, Liu Yongshi. Study on the pattern of free sedimentation of pond wastewater and the change of three-state nitrogen, total nitrogen and total phosphorus[J]. Journal of Guangdong Ocean University, 2019, 39(4): 56-62. (in Chinese with English abstract)
    [22] Wong K B, Piedrahita R H. Settling velocity characterization of aquacultural solids[J]. Aquacultural Engineering, 2000, 21(4): 233-246.
    [23] Merino G E, Piedrahita R H, Conklin D E. Settling characteristics of solids settled in a recirculating system for California halibut (Paralichthys californicus) culture[J]. Aquacultural engineering, 2007, 37(2): 79-88.
    [24] 胡日军. 舟山群岛海域泥沙运移及动力机制分析[D]. 青岛:中国海洋大学,2009.Hu Rijun. Sediment Transport and Dynamic Mechanism in the Zhoushan Archipelago Sea Area[D]. Qingdao: Ocean University of China,2009. (in Chinese with English abstract)
    [25] 中国国家标准管理委员会,海洋监测规范:GB17378.4-2007[S]. 北京:中国标准出版社,2007.
    [26] 万远扬,吴华林,沈淇,等. 潮汐环境下细颗粒泥沙沉降速度研究述评I-基本概念与研究方法[J]. 水运工程,2014(3):18-23.Wan Yuanyang, Wu Hualin, Shen Qi, et al. Settling velocity of fine sediment in a tidal environment 1: Definition & study methods[J]. Port & Waterway Engineering, 2014(3): 18-23. (in Chinese with English abstract)
    [27] 黄建维. 粘性泥沙在静水中沉降特性的试验研究[J]. 泥沙研究,1981(2):30-41.Huang Jianwei. Experimental study of settling properties of cohesive sediment in still water[J]. Journal of Sediment Research, 1981(2): 30-41. (in Chinese with English abstract)
    [28] McLaughlin, Ronald T. Settling properties of suspensions[J]. Transactions of the American Society of Civil Engineers, 1961, 126(1): 1780-1786.
    [29] 陈鋆,高光,李一平,等. 太湖水体中悬浮物的静沉降特征[J]. 湖泊科学,2006,18(5):528-534.Chen Yun, Gao Guang, Li Yiping, et al. Hydrostatic settling of suspended matter of Lake Taihu[J]. Lake Sciences, 2006, 18(5): 528-534. (in Chinese with English abstract)
    [30] 黄建维,张金善. 太湖泥沙静水沉降特性的初步试验研究[R]. 南京:南京水利科学研究院,2003.Huang Jianwei, Zhang Jinshan. Preliminary experimental study in hydrostatic settling of suspended matter of Lake Taihu[R]. Nanjing: Nanjing Hydraulic Research Institute, 2003.
  • 期刊类型引用(8)

    1. 陈哲,刘兴国,程翔宇,张旺,程果锋,肖述文. 草鱼池塘养殖水体的悬浮物特征. 渔业现代化. 2024(01): 19-28 . 百度学术
    2. 程果锋,郭泽裕,王婕,刘士坤,陈哲,程翔宇,刘兴国. 罗非鱼养殖尾水污染物沉降特征研究. 渔业现代化. 2024(06): 61-68 . 百度学术
    3. 陈金飞. 兴化湾鹅头牡蛎死亡率增高的环境因素分析. 海峡科学. 2023(04): 43-47 . 百度学术
    4. 肖之敏,熊鹰,周晓龙. FCC油浆中固体颗粒沉降特性与沉降速度模型. 华东理工大学学报(自然科学版). 2023(03): 368-375 . 百度学术
    5. 张乐天,雷霄,张文强,单保庆,魏东洋,李杰. 白洋淀悬浮颗粒物的微观形貌及结构特征. 环境科学学报. 2023(09): 142-151 . 百度学术
    6. 温英,林军,杨冠林,杨伟,唐建江. 贻贝浮筏养殖设施水动力效应及附生海藻碎屑输运的数值模拟. 上海海洋大学学报. 2022(06): 1549-1561 . 百度学术
    7. 林朋,戎振英,刘行平,葛亚明,刘俊稚,穆军. 菲律宾蛤仔对海水悬浮泥沙的絮凝效果及机理研究. 浙江海洋大学学报(自然科学版). 2022(06): 524-528 . 百度学术
    8. 李国卿,戴向荣,唐泽恒. 含酸高铁矿井水悬浮物浓度与透明度关系及其沉降特性研究. 广东化工. 2021(10): 32-34 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数:  720
  • HTML全文浏览量:  0
  • PDF下载量:  263
  • 被引次数: 15
出版历程
  • 收稿日期:  2019-12-04
  • 修回日期:  2020-04-07
  • 发布日期:  2020-05-14

目录

    /

    返回文章
    返回