高级检索+

暴雨条件下黄土高原长陡坡耕地细沟侵蚀特征

王志强, 杨萌, 张岩, 张帅

王志强, 杨萌, 张岩, 张帅. 暴雨条件下黄土高原长陡坡耕地细沟侵蚀特征[J]. 农业工程学报, 2020, 36(12): 129-135. DOI: 10.11975/j.issn.1002-6819.2020.12.016
引用本文: 王志强, 杨萌, 张岩, 张帅. 暴雨条件下黄土高原长陡坡耕地细沟侵蚀特征[J]. 农业工程学报, 2020, 36(12): 129-135. DOI: 10.11975/j.issn.1002-6819.2020.12.016
Wang Zhiqiang, Yang Meng, Zhang Yan, Zhang Shuai. Rill erosion of long and steep cropland on the Loess Plateau under heavy rainstorm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(12): 129-135. DOI: 10.11975/j.issn.1002-6819.2020.12.016
Citation: Wang Zhiqiang, Yang Meng, Zhang Yan, Zhang Shuai. Rill erosion of long and steep cropland on the Loess Plateau under heavy rainstorm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(12): 129-135. DOI: 10.11975/j.issn.1002-6819.2020.12.016

暴雨条件下黄土高原长陡坡耕地细沟侵蚀特征

基金项目: 国家自然科学基金项目(41671272)和国家重点研发计划(2016YFC0501604-05)联合资助

Rill erosion of long and steep cropland on the Loess Plateau under heavy rainstorm

  • 摘要: 细沟侵蚀是黄土高原坡耕地侵蚀的重要形式,已有的坡耕地细沟研究成果主要集中于裸土细沟侵蚀特征及其发生机制的小区或水槽试验,极端暴雨条件下细沟侵蚀观测很少,对于田间细沟侵蚀的预报仍然缺少实用的方法。该研究旨在基于实地测量数据,分析极端暴雨条件下黄土高原长陡坡耕地细沟侵蚀特征。2017年无定河流域“7.26”暴雨后,在暴雨中心附近选择15个样地进行细沟侵蚀测量,结合Google影像和无人机航拍影像,调查分析不同类型坡耕地细沟侵蚀特征。研究结果表明:1)暴雨条件下坡耕地是坡面细沟侵蚀的主要地类。长陡坡裸露坡耕地侵蚀模数为22 478 t/km2,坡长20 m时,约为种植作物的平作坡耕地的1.5倍,且坡长越长,差异越大。等高垄作能够有效减少细沟侵蚀。撂荒坡耕地细沟侵蚀模数仅为裸露坡耕地的12%,草地未发现细沟侵蚀。2)幂函数可以很好地拟合细沟侵蚀模数与坡长的关系,裸露坡耕地坡长指数为0.831。暴雨强度越大,坡长指数也越大。3)上坡来水在坡耕地上造成了严重的细沟侵蚀,与地块上承接的降水相比,上坡来水对细沟侵蚀的影响更大。坡面浅沟汇水明显减小细沟侵蚀强度,浅沟发育程度越高,细沟侵蚀强度就越小。该研究可为估算黄土高原丘陵区不同类型坡耕地的细沟侵蚀提供重要参考。
    Abstract: Rill erosion can be defined by concentrated flow in small rivulets. This type of water erosion has posed a great challenge on the sloping cropland on the Loess Plateau in China. Most previous studies were focused on the field or laboratory experiment, while the research on rill erosion under conditions of extreme heavy rain is still lacking, particularly on practical prediction on specific cropland. The purpose of this study is to investigate the characteristics of rill erosion on long and steep slopes under extreme rainstorms based on field survey data. After the heavy rainstorm on the central Loess Plateau on July 26, 2017, 15 sampling sites were selected based on Google imagery near the rainstorm center with event rainfall of 212 mm and the maximum 60-min rainfall intensity of 49.2 mm/h for rill erosion measurement. In each sampling site, cross-sectional properties were measured at 2-m intervals, and the width and depth of each rill in each section were recorded. Topographic parameters were measured based DSM derived from drone aerial images in 0.20 m resolution. Rill erosion data from a previous study on five plots under storm conditions were used to compare the impact of rainfall intensity on rill erosion along slope length. The results showed that: 1) Under rainstorm conditions, the rate of rill erosion on bare sloping cropland was 22 487 t/km2, and that on sloping cropland accounted for 68.6% that of the bare land, as the slope length was 20 m. Contouring cultivation can reduce effectively erosion, where the rill erosion was less than 5% that of the bare land, but the downslope rill erosion still occurred. The rate of rill erosion on fallow cropland was only 12% that on bare cropland with the same slope gradient, and no rill erosion was found on grassland. 2) The power function, Er=aLb, can fit the relationships between the rill erosion rate and slope length. The index of slope length (b) was 0.831 for the bare land with the slope gradient of 34°. The index of slope length increased as the increase of the rainstorm intensity, indicating that the rate of rill erosion enhanced under heavy rainstorm conditions. 3) Most sloping croplands on the loess hilly region are located in the middle of hillslope, and there is a steep ridge with 1-2 m high between the cropland and uphill grassland. Upslope contributing runoff can cause severe rill erosion on the sloping cropland. Specifically, grassland with a length of 38m can lead to the maximum erosion modulus on the downslope cropland, 56 304 t/km2. However, there was no a clear increasing trend in the rate of rill erosion as the increase of slope length, indicating that the upslope runoff has a greater impact on rill erosion than the rainfall received on the site. The existence of ephemeral gullies on the slope reduced the rill erosion intensity due to the confluence capacity of the ephemeral gullies. The finding demonstrated that the more severely the ephemeral gullies was developed, the less the rill erosion intensity was. This study can provide an important reference to estimate the rill erosion on different types of sloping land in the hilly area of Loess Plateau.
  • [1] 朱显谟. 黄土区土壤侵蚀的分类[J]. 土壤学报,1956,4(2):99-115.Zhu Xianmo. Classification on the soil erosion in the loess region[J]. Acta Pedologica Sinica, 1956, 4(2): 99-115. (in Chinese with English abstract)
    [2] Govers G, Poesen J. Assessment of the rill and interrill contributions to total soil loss from an upland field plot[J]. Geomorphology, 1988, 1(4): 343-354.
    [3] 郑粉莉,唐克丽,周佩华. 坡耕地细沟侵蚀影响因素的研究[J]. 土壤学报,1989,26(2):109-116.Zheng Fenli, Tang Keli, Zhou Peihua. Study on factors affecting rill erosion on cultivated slope land[J]. Acta Pedologica Sinica. 1989, 26(2): 109-116. (in Chinese with English abstract)
    [4] 王玉宽. 暴雨细沟侵蚀的调查研究[J]. 中国科学院水利部西北水土保持研究所集刊,1990 (2):45-49.Wang Yukuan. Study on the rill erosion under heavy rainstorm[J]. Memoir of NISWC, Academia Sinica & Ministry of Water Conservancy, 1990 (2): 45-49. (in Chinese with English abstract)
    [5] Shen Haiou, Zheng Fenli, Wen Leilei, et al. Impacts of rainfall intensity and slope gradient on rill erosion processes at loessial hillslope[J]. Soil and Tillage Research, 2016, 155: 429-436.
    [6] 郑良勇,李占斌,李鹏,等. 稀土元素示踪坡面次降雨条件下的侵蚀过程[J]. 农业工程学报,2010,26(3):87-91.Zheng Liangyong, Li Zhanbin, Li Peng, et al. Slope erosion process tracing in simulated raining with rare earth elements[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(3): 87-91. (in Chinese with English abstract)
    [7] 李君兰,蔡强国,孙莉英,等. 细沟侵蚀影响因素和临界条件研究进展[J]. 地理科学进展,2010,29(11):1319-1325.Li Junlan, Cai Qiangguo, Sun Liying, et al. Reviewing on factors and critical conditions of rill erosion[J]. Progress in Geography, 2010, 29(11): 1319-1325. (in Chinese with English abstract)
    [8] 张攀,姚文艺,唐洪武,等. 黄土坡面细沟形态变化及对侵蚀产沙过程的影响[J]. 农业工程学报,2018,34(5):114-119.Zhang Pan, Yao Wenyi, Tang Hongwu. Rill morphology change and its effect on erosion and sediment yield on loess slope[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(5): 114-119. (in Chinese with English abstract)
    [9] 沈海鸥,郑粉莉,温磊磊,等. 雨滴打击对黄土坡面细沟侵蚀特征的影响[J]. 农业机械学报,2015,46(8):104-112,89.Shen Haiou, Zheng Fenli, Wen Leilei, et al. Effects of raindrop impact on rill erosion characteristics on loess hillslope[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(8): 104-112, 89. (in Chinese with English abstract)
    [10] Jiang Fangshi, Zhan Zhenzhi, Chen Jialin, et al. Rill erosion processes on a steep colluvial deposit slope under heavy rainfall in flume experiments with artificial rain[J]. Catena, 2018, 169: 46-58.
    [11] 陈俊杰,孙莉英,刘俊体,等. 不同坡长与雨强条件下坡度对细沟侵蚀的影响[J]. 水土保持通报,2013,33(2):1-5.Chen Junjie, Sun Liying Liu Junti, et al. Effect of slope gradient on rill erosion under different rainfall intensities and slope lengths[J]. Bulletin of Soil and Water Conservation, 2013, 33(2): 1-5. (in Chinese with English abstract)
    [12] 王颢霖,焦菊英,唐柄哲,等. 陕北子洲"7·26"暴雨后坡耕地细沟侵蚀及其影响因素分析[J]. 农业工程学报,2019,35(11):122-131.Wang Haolin, Jiao Juying, Tang Bingzhe, et al. Characteristics of rill erosion and its influencing factors in slope farmland after "7·26" rainstorm in Zizhou County, Shaanxi Province[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(11): 122-131. (in Chinese with English abstract)
    [13] 肖培青,郑粉莉. 上方来水来沙对细沟侵蚀产沙过程的影响[J]. 水土保持通报,2001,21(1):23-27.Xiao Peiqing, Zheng Fenli. Effect of run-on water and sediment on rill erosion process at down-slope section[J]. Bulletin of Soil and Water Conservation, 2001, 21(1): 23-27. (in Chinese with English abstract)
    [14] 汪晓勇,郑粉莉,张新和. 上方汇流对黄土坡面侵蚀-搬运过程的影响[J]. 中国水土保持科学,2009,7(2):7-11.Wang Xiaoyong, Zheng Fenli, Zhang Xinhe. Effects of upslope runoff on detachment and transport processes on loessial hillslopes[J]. Science of Soil and Water Conservation. 2009, 7(2): 7-11. (in Chinese with English abstract)
    [15] Gabriels D, Pauwels J, De Boodt M. A quantitative rill erosion study on a loamy sand in the hilly region of Flanders[J]. Earth Surface Processes and Landforms, 1977, 2: 257-259.
    [16] Van L M, Saxton K. Slope steepness and incorporated residue effects on rill erosion[J]. Transactions of ASAE, 1983, 26: 1738-1744
    [17] Govers G. Rill Erosion on Arable Land in Central Belgium: Rates, Controls and Predictability[J]. Catena, 1991, 18: 133-155.
    [18] He Jijun, Sun Liying, Gong Huili, et al. The Characteristics of rill development and their effects on runoff and sediment yield under different slope gradients[J]. Journal of Mountain Science, 2016, 13(3): 397-404.
    [19] 陈超,雷廷武,班云云,等. 东北黑土坡耕地不同水力条件下坡长对土壤细沟侵蚀的影响(英文)[J]. 农业工程学报,2019,35(5):163-170.Chen Chao, Lei Tingwu, Ban Yunyun, et al. Effects of slope lengths on rill erosion under different hydrodynamic conditions in black soil sloping farmland of Northeast China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(5):163-170. (in English with Chinese abstract)
    [20] McCool D K, Foster G R, Mutchler C K, et al. Revised slope length factor for the Universal Soil Loss Equation[J]. Transactions of the American Society of Agricultural Engineers (Transactions of the ASAE), 1989, 32(5): 1571-1576.
    [21] Foster G R, Meyer L D, and Onstad C A. A runoff erosivity factor and variable slope length exponents for soil loss estimates[J]. Transactions of the American Society of Agricultural Engineers (Transactions of the ASAE), 1977, 20(4): 683-687.
    [22] Renard K G, Foster G R,Weesies G A, et al. RUSLE: A guide to conservation planning with the revised universal soil loss equation[R]. USDA Agricultural Handbook, 1997, 703.
    [23] McCool D K, George G O, Freckleton M, et al. Topographic effect on erosion from cropland in the northwestern wheat region[J]. Transactions of the American Society of Agricultural Engineers (Transactions of the ASAE), 1993, 36(4): 1067-1072.
    [24] 黎四龙,蔡强国,吴淑安,等. 坡长对径流及侵蚀的影响[J]. 干旱区资源与环境,1998,12(1):29-35.Li Silong, Cai Qiangguo, Wu Shu'an, et al. Effect of slope length on runoff and soil erosion[J]. Journal of Arid Land Resources and Environment, 1998, 12(1): 29-35. (in Chinese with English abstract)
    [25] Liu B Y, Nearing M A, Shi P J, et al. Slope length effects on soil loss for steep slopes[J]. Soil Science Society of America Journal, 2000, 64: 1759-1764.
    [26] Govers G, Giménez R, Oost K V. Rill erosion: Exploring the relationship between experiments, modelling and field observations[J]. Earth Science Reviews, 2007, 84(3/4): 87-102.
    [27] 江忠善,王志强,刘志. 黄土丘陵区小流域土壤侵蚀空间变化定量研究[J]. 土壤侵蚀与水土保持学报,1996,2(1):1-9.Jiang Zhongshan, Wang Zhiqiang, Liu Zhi. Quantitative study on spatial variation of soil erosion in a small watershed in the Loess hilly region[J]. Journal of Soil Erosion and Soil Conservation, 1996, 2(1): 1-9. (in Chinese with English abstract)
    [28] 郑粉莉. 细沟侵蚀量测算方法的探讨[J]. 水土保持通报,1989,9(4):41-45,49.Zheng Fenli. A research on method of measuring rill erosion amount[J]. Bulletin of Soil and Water Conservation. 1989, 9(4): 41-45, 49. (in Chinese with English abstract)
    [29] 彭文英,张科利,陈瑶,等. 黄土坡耕地退耕还林后土壤性质变化研究[J]. 自然资源学报,2005,20(2):272-278.Peng Wenying, Zhang Keli, Chen Yao, et al. Research on soil quality change after returning Farmland to forest on the loess sloping croplands[J]. Journal of Natural Resources. 2005, 20(2): 272-278. (in Chinese with English abstract)
    [30] 连纲,郭旭东,傅伯杰,等. 黄土高原小流域土壤容重及水分空间变异特征[J]. 生态学报,2006,26(3):647-754.Lian Gang, Guo Xudong , Fu Bojie, et al. Spatial variability of bulk density and soil water in a small catchment of the Loess Plateau[J]. Acta Ecologica Sinica. 2006, 26(3): 647-754. (in Chinese with English abstract)
    [31] Desmet P J J, Govers G. Two-dimensional modelling of the within-field variation in rill and gully geometry and location related to topography[J]. Catena, 1997, 29(3/4): 283-307.
  • 期刊类型引用(12)

    1. 王珊珊,吕刚,董亮,李叶鑫. 极端暴雨作用下排土场边坡细沟侵蚀过程模拟研究. 水土保持研究. 2025(04): 18-25 . 百度学术
    2. 刘焕永,杜鹏飞,赵莹,陈吟. 暴雨条件下黄土高原荞麦地的沟蚀特征——以陕西省定边县为例. 水土保持研究. 2024(05): 1-8+17 . 百度学术
    3. 王小赟,王琦,周旭姣,赵武成,赵晓乐,张登奎,刘青林,崔循臻,李虹彩. 生物炭覆盖垄沟集雨种植对紫花苜蓿根芽、干草产量和水分利用效率的影响. 草原与草坪. 2023(03): 1-13 . 百度学术
    4. 刘松波,孙莉英,和继军,田磊,蔡强国,王铭薇. 极缓坡黄土坡面片状侵蚀及其水动力学参数特征. 陕西师范大学学报(自然科学版). 2023(06): 37-46 . 百度学术
    5. 张座雄,刘兴荣,王之君,黄金燕,马彦杰. 降雨冲刷下黄土堆填边坡土水参数变化规律. 农业工程学报. 2023(23): 75-84 . 本站查看
    6. 张馨予,查同刚,张泽宇,裴益乐,张晓霞,吴晓静,于洋. 乌拉山废弃矿区坡长对客土坡面产流产沙与沟蚀特征的影响. 水土保持学报. 2022(06): 8-15 . 百度学术
    7. 李朋飞,黄珂瑶,胡晋飞,高健健,郝铭揆,党恬敏,张晓晨. 黄土丘陵沟壑区细沟发育形态的变化及其与侵蚀产沙的关系. 农业工程学报. 2022(18): 92-102 . 本站查看
    8. 付兴涛,王奇花,王锦志. 降雨条件下晋西黄绵土坡面室内外径流侵蚀试验差异分析. 农业工程学报. 2021(01): 116-124 . 本站查看
    9. 邵立明,任俊达,吕凡,章骅,何品晶. 餐厨垃圾生物发酵液对黄土丘陵区土壤质量的影响试验. 环境科学. 2021(09): 4500-4509 . 百度学术
    10. 牛耀彬,吴旭,高照良,毕如田,吕春娟. 工程堆积体坡面细沟侵蚀形态空间变化. 水土保持研究. 2021(06): 32-38 . 百度学术
    11. 焦振华. 白龙江引水工程华池至延安段重大工程地质问题研究. 水利与建筑工程学报. 2020(05): 170-174 . 百度学术
    12. 陈卓鑫,王文龙,康宏亮,杨波,赵满,王文鑫. 特大暴雨下不同土地利用类型坡面切沟发育特征. 农业工程学报. 2020(23): 77-84 . 本站查看

    其他类型引用(13)

计量
  • 文章访问数:  835
  • HTML全文浏览量:  2
  • PDF下载量:  391
  • 被引次数: 25
出版历程
  • 收稿日期:  2020-03-05
  • 修回日期:  2020-05-27
  • 发布日期:  2020-06-14

目录

    /

    返回文章
    返回