高级检索+

基于可调谐吸收光谱的畜禽舍氨气浓度检测

谭鹤群, 李鑫安, 艾正茂

谭鹤群, 李鑫安, 艾正茂. 基于可调谐吸收光谱的畜禽舍氨气浓度检测[J]. 农业工程学报, 2020, 36(13): 186-194. DOI: 10.11975/j.issn.1002-6819.2020.13.022
引用本文: 谭鹤群, 李鑫安, 艾正茂. 基于可调谐吸收光谱的畜禽舍氨气浓度检测[J]. 农业工程学报, 2020, 36(13): 186-194. DOI: 10.11975/j.issn.1002-6819.2020.13.022
Tan Hequn, Li Xin'an, Ai Zhengmao. Detection of ammonia concentration in livestock poultry houses based on tunable diode laser absorption spectroscopy[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(13): 186-194. DOI: 10.11975/j.issn.1002-6819.2020.13.022
Citation: Tan Hequn, Li Xin'an, Ai Zhengmao. Detection of ammonia concentration in livestock poultry houses based on tunable diode laser absorption spectroscopy[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(13): 186-194. DOI: 10.11975/j.issn.1002-6819.2020.13.022

基于可调谐吸收光谱的畜禽舍氨气浓度检测

基金项目: 十三五国家重点研发计划项目(2018YFD0500702)

Detection of ammonia concentration in livestock poultry houses based on tunable diode laser absorption spectroscopy

  • 摘要: 为开发一种基于可调谐吸收光谱(Tunable Diode Laser Absorption Spectroscopy,TDLAS)技术的畜禽舍NH3浓度实时在线监测装置,以满足畜禽舍环境监测与控制的需要。该研究基于TDLAS技术,采用气室式封闭光程,搭建了一套畜禽舍NH3浓度检测系统。该系统采用波长为1 512 nm蝶形激光器作为光源,根据分子吸收光谱理论,采用波长调制技术,实现了对畜禽舍NH3浓度检测。为优化检测系统性能,通过改变锯齿扫描信号、调制正弦信号的幅值与频率以及输入信号与参考信号相位差,确定了系统最佳的调制参数,并通过系统优化试验确定了系统最佳的气室加热温度、系统响应时间与二次谐波平均次数等关键参数。最后,通过浓度标定试验与性能试验对检测系统进行了测试。试验结果表明,检测系统调制参数在正弦调制信号频率为9 kHz、正弦调制信号幅值为30 mV、锯齿扫描信号频率为1 Hz、锯齿扫描范围为170~215 mV、谐波分析中输入信号与参考信号相位差为50°参数下对应的二次谐波形状与幅值最佳;不同浓度NH3与二次谐波幅值之间具有良好的线性关系(拟合方程相关系数r=0.995 8);检测系统的进气响应时间约为42 s(气室自充气达到目标浓度99%);气室加热温度为403 K时,NH3在气室吸附作用最小;Allan方差分析表明,检测系统在积分时间为10 s时达到探测限,探测限为0.038 mg/m3。在最优系统参数下对系统进行性能试验,得到检测系统综合线性误差为1.00%,定量测量综合重复误差为0.51%,可满足畜禽舍内NH3浓度长期持续监测的需求。
    Abstract: This study aims to develop an NH3 concentration monitoring system based on tunable diode laser absorption spectroscopy (TDLAS) for real-time and in-situ control the environment of livestock and poultry houses. In an air chamber, an optical path was attached to a butterfly laser with a wavelength of 1512 nm as the light source. NH3 concentration was then detected in livestock poultry houses based on the molecular absorption spectroscopy and wavelength modulation technology. To optimize the performance of TDLAS system, the optimal modulation parameters were determined via tailoring the amplitude and frequency of sawtooth scanning signal and the sinusoidal modulation signal, as well as the phase difference between the input and the reference signals. Moreover, the optimal parameters included the heating temperature in an air chamber, system response time, and the average number of second harmonics. Finally, the concentration calibration experiments were used to verify the performance of TDLAS system. The results showed that the optimal second harmonic shape and amplitude were obtained when the frequency and amplitude of sinusoidal modulation signal were set as 9 kHz and 30 mV, respectively, while the scanning frequency and range of sawtooth scanning signal as 1 Hz and 170-215 mV, respectively, as well the phase difference between the input signal and the reference signal as 50°. The concentration calibration test achieved for the standard gas (N2, NH3). There was a good linear relationship between the different concentrations of NH3 and the amplitude of second harmonic (the correlation coefficient of fitting equation r2= 0.9958). The response time of detection system was about 42 s, from the start of air chamber self-inflation to the time when the target concentration of 99% was reached. In the response test, the results showed that the appropriate increase in the flow rate of gas can effectively improve the detection efficiency of system. According to the temperature test, too high heating temperature has led to ammonia oxidation, whereas too low heating temperature cannot effectively limit ammonia adsorption in the gas chamber. The adsorption of NH3 reached the lowest level, when the heating temperature was set as 403 K in the chamber. According to Allan variance analysis, the TDLAS system reached the detection limit of 0.038 mg/m3 when the integration time was 10 s. The average number was set to 5 times, indicating a high accuracy during the stable period of detection system. Performance tests were performed on the system under the optimal system parameters, indicating a comprehensive linear error of 1.00%, and a quantitative comprehensive repeated error of 0.51%. In four concentration conditions, the accuracy and stability of detection system were close to that of the acousto-optic spectrum detection, and better than that of the electrochemical detection. The findings demonstrated that the developed system can present highly accurate detection and stable performance, and thereby to serve as the needs of long-term continuous monitoring of NH3 concentration in livestock houses.
  • [1] 王悦,赵同科,邹国元,等. 畜禽养殖舍氨气排放特性及减排技术研究进展[J]. 动物营养学报,2017,29(12):4249-4259.Wang Yue, Zhao Tongke, Zou Guoyuan, et al. Research statues of ammonia emission characteristics and mitigation technologies from livestock houses[J]. Chinese Journal of Animal Nutrition, 2017, 29(12): 4249-4259. (in Chinese with English abstract)
    [2] 孙永波,栾素军,王亚,等. 畜禽呼吸道黏膜屏障的结构和功能及其改善措施[J]. 动物营养学报,2017,29(6):1866-1873.Sun Yongbo, Luan Sujun, Wang Ya, et al. Structure and functions of mucosal barrier of respiratory tract in livestock and poultry and its improvement measures[J]. Chinese Journal of Animal Nutrition, 2017, 29(6): 1866-1873. (in Chinese with English abstract)
    [3] 李季,王同心,姚卫磊,等. 畜禽舍氨气排放规律及对畜禽健康的危害[J]. 动物营养学报,2017,29(10):3472-3481.Li Ji, Wang Tongxin, Yao Weilei, et al. Ammonia emission characteristic from livestock and poultry house and its harm to livestock and poultry health[J]. Chinese Journal of Animal Nutrition, 2017, 29(10): 3472-3481. (in Chinese with English abstract)
    [4] Saraz Jairo-Alexander-Osorio, Tin?co Ilda-de-Fátima-Ferreira, Rocha Keller-Sullivan-Olivera, et al. A CFD based approach for determination of ammonia concentration profile and flux from poultry houses with natural ventilation [J]. Revista Facultad Nacional de Agronomía Medellín, 2016, 69(1): 7825-7834.
    [5] Zhang S, Chen J, Jiao L. Design and development of online system for monitoring harmful gas in animal house[C]//2017 2nd International Conference on Frontiers of Sensors Technologies (icfst): Ieee, 2017.
    [6] 朱虹,李爽,郑丽敏,等. 生猪养殖场无线传感器网络路径损耗模型的建立与验证[J]. 农业工程学报,2017,33(2):205-212.Zhu Hong, Li Shuang, Zheng Limin, et al.Modeling and validation on path loss of WSN in pig breeding farm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(2): 205-212. (in Chinese with English abstract)
    [7] 汪开英,吴捷刚,赵晓洋. 畜禽场空气污染物检测技术综述[J]. 中国农业科学,2019,52(8):1458-1474.Wang Kaiying, Wu Jiegang, Zhao Xiaoyang. Review of measurement technologies for air pollutants at livestock and poultry farms[J]. Scientia Acricultura Sinica, 2019, 52(8): 1458-1474. (in Chinese with English abstract)
    [8] Wei N, Ruifeng K, Zhenyu X, et al. Research progress on the application of tunable diode laser absorption spectroscopy[J]. Chinese Journal of Lasers, 2018, 45(9): 911001.
    [9] Lackner M. Tunable diode laser absorption spectroscopy (tdlas) in the process industries-a review[J]. Reviews in Chemical Engineering, 2007, 23(2): 65-147.
    [10] Cui X, Dong F, Zhang Z, et al. Environmental Application of High Sensitive Gas Sensors with Tunable Diode Laser Absorption Spectroscopy[M] London: Green Electronics. IntechOpen, 2017.
    [11] 何莹. 基于激光吸收光谱的主要人为氨排放源在线检测技术与应用研究[D]. 合肥:中国科学技术大学,2017.He Ying. Study on On-Line Detection Technology and Application of Main Anthropogenic Ammonia Emissions Based on Laser Absorption Spectroscopy[D]. Hefei:University of Science and Technology of China, 2017. (in Chinese with English abstract)
    [12] Casey K D, Gates R S, Shores R C, et al. Ammonia emissions from a US broiler house: Comparison of concurrent measurements using three different technologies[J]. Journal of the Air & Waste Management Association, 2010, 60(8): 939-948.
    [13] Wei Z, Xingxing G, Qing T, et al. Design of pump suction ammonia detection device based on tdlas technology[C]// Proceedings of 2017 Ieee 2nd Information Technology, Networking, Electronic and Automation Control Conference (itnec 2017), 2017.
    [14] 高星星,张尉,方贤才,等. 自校准式NH3浓度检测装置设计与研究[J]. 中国农机化学报,2017,38(8):82-86.Gao Xingxing, Zhang Wei, Fang Xiancai, et al. Design and research of self-calibration NH3 gas detectiondevice[J]. Journal of Chinese Agricultural Mechanization, 2017, 38(8): 82-86. (in Chinese with English abstract)
    [15] Paynter R. Modification of the beer-lambert equation for application to concentration gradients[J]. Surface and Interface Analysis, 1981, 3(4): 186-187.
    [16] Reid J, Labrie D. Second-harmonic detection with tunable diode lasers: comparison of experiment and theory[J]. Applied Physics B, 1981, 26(3): 203-210.
    [17] Zhu X, Yao S, Ren W, et al. Tdlas monitoring of carbon dioxide with temperature compensation in power plant exhausts[J]. Applied Sciences, 2019, 9(3): 442.
    [18] Zhang Z, Pang T, Yang Y, et al. Development of a tunable diode laser absorption sensor for online monitoring of industrial gas total emissions based on optical scintillation cross-correlation technique[J]. Optics Express, 2016, 24(10): A943-A955.
    [19] 国家环境保护总局. 空气和废气监测分析方法(第4版)[M].北京:中国环境科学出版社,2003.
    [20] Li G, Dong E, Ji W. A near-infrared trace CO2 detection system based on an 1580 nm tunable diode laser using a cascaded integrator comb (cic) filter-assisted wavelength modulation technique and a digital lock-in amplifier[J]. Frontiers in Physics, 2019, 7: 199.
    [21] Goldenstein C S, Miller V A, Spearrin R M, et al. Spectraplot. com: Integrated spectroscopic modeling of atomic and molecular gases[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 200: 249-257.
    [22] Rothman L S,Gordon I E, Babikov Y, et al. The hitran2012 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 130: 4-50.
    [23] Rieker G B, Jeffries J B, Hanson R K. Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments[J]. Applied Optics, 2009, 48(29): 5546-5560.
    [24] 张志荣,孙鹏帅,夏滑,等. 可调谐半导体激光吸收光谱技术的调制参量影响及优化选择[J]. 光子学报,2015,44(1):35-44.Zhang Zhirong, Sun Pengshuai, Xia Hua, et al. Modulation parameters influence and optimal selection of tunable diode laser absorption spectroscopy[J]. Acta Photonica Sinica, 2015, 44(1): 35-44. (in Chinese with English abstract)
    [25] 车璐,丁艳军,彭志敏. TDLAS 技术中谐波信号的理论推导与实验研究[J]. 应用物理,2012,2(3):92-97.Che Lu, Ding Yanjun, Peng Zhimin. Theoretical derivation and experimental research of harmonic signals based on TDLAS[J]. Applied Physics, 2012, 2(3): 92-97. (in Chinese with English abstract)
    [26] 张步强,许振宇,刘建国,等. 基于波长调制技术的激光器调制特性研究[J]. 光谱学与光谱分析,2019,39(9):2702-2707.Zhang Buqiang, Xu Zhenyu, Liu Jianguo, et al. Modulation characteristics of laser based on wavelength modulation technology[J]. Spectroscopy and Spectral Analysis, 2019, 39(9): 2702-2707. (in Chinese with English abstract)
    [27] Zhimin P, Yanjun D, Lu C, et al. Odd harmonics with wavelength modulation spectroscopy for recovering gas absorbance shape[J]. Optics Express, 2012, 20(11): 11976-11985.
    [28] Yang C, Mei L, Deng H, et al. Wavelength modulation spectroscopy by employing the first harmonic phase angle method[J]. Optics Express, 2019, 27(9): 12137-12146.
    [29] 徐敏. 基于TDLAS气体检测系统中非标定波长调制技术的研究[D].成都:电子科技大学,2016.Xu Min. Research on TDLAS Gas Detection System Based on Calibration-Free Wavelength Modulation Spectroscopy[D]. Chengdu:University of Electronic Science and Technology of China, 2016. (in Chinese with English abstract)
    [30] 刘永胜,贺建军,朱高峰,等. 封装西林药瓶残留氧气检测中的谐波基线校正和去噪方法[J]. 光谱学与光谱分析,2017,37(8):2598-2602.Liu Yongsheng, He Jianjun, Zhu Gaofeng, et al. A new method for second harmonic baseline correction and noise elimination on residual oxygen detection in packaged xilin bottle[J]. Spectroscopy and Spectral analysis, 2017, 37(8): 2598-2602. (in Chinese with English abstract)
    [31] 郭媛,赵学玒,张锐,等. 小波变换应用于谐波谱线的噪声滤除与基线校正[J]. 光谱学与光谱分析,2013,33(8):2172-2176.Guo Yuan, Zhao Xuehong, Zhang Rui, et al. The noise filtering and baseline correction for harmonic spectrum based on wavelet transform[J]. Spectroscopy and Spectral analysis, 2013, 33(8): 2172-2176. (in Chinese with English abstract)
    [32] Stritzke F. Absorptionsspektrometrie Zur Zeitaufgel?sten Untersuchung Von Ammoniakverteilungen in Abgas[D]. Hessen: Technische Universit?t Darmstadt, 2017.
    [33] Guo Xinqian, Zheng Fei, Li Chuanliang, et al. A portable sensor for in-situ measurement of ammonia based on near-infrared laser absorption spectroscopy[J]. Optics and Lasers in Engineering, 2019, 115: 243-248.
    [34] Pisano J T, Sauer C, Durbin T, et al. Measurement of low concentration nh3 in diesel exhaust using tunable diode laser adsorption spectroscopy (tdlas)[R]: Sae Technical Paper, 2009.
    [35] Werle P, Mücke R, Slemr F. The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (tdlas)[J]. Applied Physics B, 1993, 57(2): 131-139.
    [36] 崔小娟,董凤忠,张志荣,等. 基于二次谐波调制技术提高HONO测量灵敏度的方法研究[J]. 光学学报,2015,35(6):350-357.Cui Xiaojuan, Dong Fengzhong, Zhang Zhirong, et al. Studies on improving measurement sensitivity of HONObased on second harmonic wavelength modulation technology[J]. Acta Optica Sinica, 2015, 35(6): 350-357. (in Chinese with English abstract)
    [37] Trabue S, Kerr B, Scoggin K. Odor and odorous compound emissions from manure of swine fed standard and dried distillers grains with soluble supplemented diets[J]. Journal of Environmental Quality, 2016, 45(3): 915-923.
    [38] Chiumenti A. Complete nitrification-denitrification of swine manure in a full-scale, non-conventional composting system[J]. Waste Management, 2015, 46: 577-587.
    [39] 高云,刁亚萍,林长光,等. 机械通风楼房猪舍热环境及有害气体监测与分析[J]. 农业工程学报,2018,34(4):239-247.Gao Yun, Diao Yaping, Lin Changguang, et al.Monitoring and analysis of thermal environment and harmful gases in mechanically ventilated multistory pig buildings[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(4): 239-247. (in Chinese with English abstract)
  • 期刊类型引用(11)

    1. 邢伟杰,金波,石诗影,蒲俊华,赵华轩,李尚民,窦新红. 家禽养殖环境调控关键技术与设施设备研究进展. 中国家禽. 2025(03): 149-156 . 百度学术
    2. 杨朝凤,沈晨颖,卢俊城,王娟,邵杰. 基于量子级联激光吸收光谱技术的NH_3吸附性测量研究(特邀). 光子学报. 2023(03): 156-164 . 百度学术
    3. 吴佳伦,陈勇,翟世明,王焘,侯晓玲,夏波,何晋. 化学吸收法采集固定污染源氨气的影响因素探究. 中国环境监测. 2023(02): 232-240 . 百度学术
    4. 陈耿,苑志宇,赵卓,王嵩,赵云辉,吴毓瑾,程译瑶,张金煜,王春昕. 畜禽舍环境检测方法、设备与布局方案分析. 黑龙江畜牧兽医. 2023(18): 33-38 . 百度学术
    5. 孙杰,马凯欣,王佳乐,胡应宽,苑旭涵. 当代禽舍养殖问题及其发展前景. 北方牧业. 2023(18): 12 . 百度学术
    6. 王祺. 基于光纤激光器的机动车尾气CO排放浓度检测方法. 激光杂志. 2022(06): 196-200 . 百度学术
    7. 张浩,王玲,邹彩虹,胡建东,段正. TDLAS系统中信号降噪方法的仿真分析. 激光杂志. 2022(07): 31-38 . 百度学术
    8. 郑炜超,邓森中,童勤,王阳,李保明,滕光辉. 家禽养殖智能装备与信息化技术研究进展. 山西农业大学学报(自然科学版). 2022(06): 2-11 . 百度学术
    9. 成俊娜,杨凌,郝欣,赵韦静,王晓辰. 基于STM32的氨气检测系统的设计. 科技资讯. 2021(07): 60-63 . 百度学术
    10. 龙长江,谭鹤群,朱明,辛瑞,覃光胜,黄彭志. 畜禽舍移动式智能监测平台研制. 农业工程学报. 2021(07): 68-75 . 本站查看
    11. 李保明,王阳,郑炜超,王朝元. 畜禽养殖智能装备与信息化技术研究进展. 华南农业大学学报. 2021(06): 18-26 . 百度学术

    其他类型引用(5)

计量
  • 文章访问数:  715
  • HTML全文浏览量:  0
  • PDF下载量:  342
  • 被引次数: 16
出版历程
  • 收稿日期:  2020-03-12
  • 修回日期:  2020-04-08
  • 发布日期:  2020-06-30

目录

    /

    返回文章
    返回