高级检索+

湄公河流域生态系统服务与利益补偿机制

於嘉闻, 龙爱华, 邓晓雅, 刘昀东, 何新林, 张继

於嘉闻, 龙爱华, 邓晓雅, 刘昀东, 何新林, 张继. 湄公河流域生态系统服务与利益补偿机制[J]. 农业工程学报, 2020, 36(13): 280-290. DOI: 10.11975/j.issn.1002-6819.2020.13.033
引用本文: 於嘉闻, 龙爱华, 邓晓雅, 刘昀东, 何新林, 张继. 湄公河流域生态系统服务与利益补偿机制[J]. 农业工程学报, 2020, 36(13): 280-290. DOI: 10.11975/j.issn.1002-6819.2020.13.033
Yu Jiawen, Long Aihua, Deng Xiaoya, Liu Yundong, He Xinlin, Zhang Ji. Ecosystem services and benefit compensation mechanism in the Mekong River Basin[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(13): 280-290. DOI: 10.11975/j.issn.1002-6819.2020.13.033
Citation: Yu Jiawen, Long Aihua, Deng Xiaoya, Liu Yundong, He Xinlin, Zhang Ji. Ecosystem services and benefit compensation mechanism in the Mekong River Basin[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(13): 280-290. DOI: 10.11975/j.issn.1002-6819.2020.13.033

湄公河流域生态系统服务与利益补偿机制

基金项目: 国家重点研发计划(2016YFA0601602);国家重点研发计划(2017YFC0404300);国家自然科学基金项目(U1803244)

Ecosystem services and benefit compensation mechanism in the Mekong River Basin

  • 摘要: 湄公河流域是中国"一带一路"沿线的重要门户,核算流域各国的生态系统服务价值(Ecosystem Service Value,ESV)与利益补偿量,对建立各国资源利用与经济补偿的联动关系、促进流域协调发展具有重要意义。基于生态足迹理论,对湄公河流域1995-2015年的ESV和生态盈余(或赤字)状况进行了动态评估,结合流域各国的实际经济发展水平对生态补偿优先级进行量化分析,初步建立了各国ESV与实际生态补偿量的转化关系,并对"生态消费型"国家在现状年(2015年)的实际生态补偿量进行了确定。结果表明:1)湄公河流域ESV由1995年的1 289.76亿美元下降至2015年的1 259.21亿美元,各国ESV从大到小依次为:泰国、老挝、柬埔寨、越南、缅甸;各国林地ESV的比重最大(>60.0%),水域和湿地ESV比重的增幅最快,近20 a增加了4.5%。2)1995-2015年间,流域境内的缅、老两国为生态盈余状态,其他3国为生态赤字状态,且赤字水平呈逐年加重趋势,其中泰、越两国对全流域生态足迹(Ecological Footprint,EF)的贡献比重高达80.1%。3)流域上游的缅、老两国为"生态输出型"国家,下游的3个国家为"生态消费型"国家,其中泰、越两国经济发展水平较好且生态补偿优先级系数(Ecological Compensation Priority Sequence,ECPS)更低(分别为0.05和0.09),均低于其他3个湄公河流域国家(缅甸:2.67,老挝:1.16,柬埔寨:0.55),应率先进行生态支付。4)结合流域各国的实际经济发展水平,初步确定下游"生态消费型"国家应支付实际生态补偿合计680.63亿美元,泰国、越南和柬埔寨分别支付507.73、167.61和5.29亿美元。该研究结果可为湄公河流域资源管理和生态补偿政策的建立提供理论支撑,并为其他跨境流域相关的研究提供借鉴与参考。
    Abstract: The Mekong river basin is bringing great economic and ecological values in the world, expecting to support the scheme of China’s Belt Road Initiative. Taking the sharing of Mekong River Basin as a case study, this study aims to calculate the Ecosystem Service Value (ESV) and compensation benefits for countries in the Mekong River Basin, in order to maintain the linkage between benefit sharing and economic compensation in Mekong River Basin. A biophysical approach based on the Ecological Footprint (EF) was used to measure the ESV and ecological surplus (or deficit) in the Mekong River Basin in 1995 and 2015. The relationship between ESV and actual compensatory payment for ecosystem services was initially investigated to quantitatively analyze the priority of ecological compensations. The results showed that: 1) The ESV decreased 3 billion dollars (from 128.976 to 125.921 billion dollars) during 1995-2015 in the Mekong River Basin. Specifically, Thailand presented the maximum ESV, followed by Laos, Cambodia, Vietnam, and Myanmar. The qualitative assessment revealed that the highest levels of ESV were derived from forest in every country (>61.7%). There was a 4.5% increase in the ecosystem service that provided by water provisioning and wetlands in the past 20 years. 2) Myanmar and Laos were in the state of “ecological surplus”, while the other three countries were in the state of “ecological deficit”, indicating an increase deficit level. Thailand and Vietnam showed more than 80.1% of the total ecological footprint (EF) of the basin. 3) Myanmar and Laos were also the “ecological export” countries, whereas, the three countries in the lower reaches were the “ecological consumption” countries. Thailand and Vietnam can give a priority on the payment for ecosystem services because of its better economic outcomes and lower Ecological Compensation Priority Sequence (ECPS) values of 0.05 and 0.09, respectively, indicating that lower than the other three countries in the Mekong River Basin (Myanmar: 2.67, Laos: 1.16, Cambodia: 0.55). 4) In the course of economic growth of the countries in Mekong River Basin, the total ecological compensation required 68.063 billion dollars from the “ecological consumption” countries in the lower reaches. Thailand, Vietnam, and Cambodia can be required 50.773, 16.761 and 0.529 billion dollars, respectively. This finding can provide a theoretical support to establish the policies for resource management and compensatory payment in the Mekong River Basin and other transboundary river basins.
  • [1] Kliot N, Shmueli D, Shamir U. Institutions for management of transboundary water resources: Their nature, characteristics and shortcomings[J]. Water Policy, 2001, 3(3): 229-255.
    [2] Timmerman J, Langaas S. Water information: What is it good for? The use of information in transboundary water management[J]. Regional Environmental Change, 2005, 5(4): 177-187.
    [3] Ze Han, Wei Song, Deng Xiangzheng. Progress in the research on benefit-sharing and ecological compensation mechanisms for transboundary rivers[J]. Journal of Resources and Ecology, 2017, 8(2): 129-140.
    [4] Intralawan A, Wood D, Frankel R, et al. Tradeoff analysis between electricity generation and ecosystem services in the Lower Mekong Basin[J]. Ecosystem Services, 2018, 30: 27-35.
    [5] McIntyre O. Environmental Protection of International Watercourses under International law[M]. London: Routledge, 2016.
    [6] 黄锡生,峥嵘. 论跨界河流生态受益者补偿原则[J]. 长江流域资源与环境,2012,21(11):1402-1408.Huang Xisheng, Zheng Rong. Compensation principle of the beneficiaries of the transboundary rivers[J]. Resources and Environment in the Yangtze Basin, 2012, 21(11): 1402-1408. (in Chinese with English abstract)
    [7] 曾贤刚,刘纪新,段存儒,等. 基于生态系统服务的市场化生态补偿机制研究-以五马河流域为例[J]. 中国环境科学,2018,38(12):4755-4763.Zeng Xiangang, Liu Jixin, Duan Cunru, et al. A study on market-oriented ecological compensation for the ecosystem services based on Wuma River Watershed[J]. China Environmental Science, 2018, 38(12): 4755-4763. (in Chinese with English abstract)
    [8] 闫丰,王洋,杜哲,等. 基于IPCC排放因子法估算碳足迹的京津冀生态补偿量化[J]. 农业工程学报,2018,34(4):15-20.Yan Feng, Wang Yang, Du Zhe, et al. Quantification of ecological compensation in Beijing-Tianjin-Hebei based on carbon footprint calculated using emission factor method proposed by IPCC[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(4): 15-20. (in Chinese with English abstract)
    [9] Fraley J, Marotz B, Decker-Hess J, et al. Mitigation, compensation, and future protection for fish populations affected by hydropower development in the upper Columbia system, Montana, USA[J]. Regulated Rivers: Research & Management, 1989, 3(1): 3-18.
    [10] Mamatkanov D M. Mechanisms for improvement of transboundary water resources management in Central Asia[M]. Dordrecht: Springer, 2008.
    [11] López-Hoffman L, Varady R G, Flessa K W, et al. Ecosystem services across borders: A framework for transboundary conservation policy[J]. Frontiers in Ecology and the Environment, 2010, 8(2): 84-91.
    [12] 李晓光,苗鸿,郑华,等. 生态补偿标准确定的主要方法及其应用[J]. 生态学报,2009,29(8):4431-4440.Li Xiaoguang, Miao Hong, Zheng Hua, et al. Main methods for setting ecological compensation standard and their application[J]. Acta Ecologica Sinica, 2009, 29(8): 4431-4440. (in Chinese with English abstract)
    [13] 耿涌,戚瑞,张攀. 基于水足迹的流域生态补偿标准模型研究[J]. 中国人口·资源与环境,2009,19(6):11-16.Geng Yong, Qi Rui, Zhang Pan. A water footprint based model on river basin eco-compensation[J]. China Population, Resources and Environment, 2009, 19(6): 11-16. (in Chinese with English abstract)
    [14] 刘红光,陈敏,唐志鹏. 基于灰水足迹的长江经济带水资源生态补偿标准研究[J]. 长江流域资源与环境,2019,28(11):2553-2563.Liu Hongguang, Chen Min, Tang Zhipeng. Study on ecological compensation standards of water resources based on grey water footprint: A case of the Yangtze River economic belt[J]. Resources and Environment in the Yangtze Basin, 2019, 28(11): 2553-2563. (in Chinese with English abstract)
    [15] Boithias L, Terrado M, Corominas L, et al. Analysis of the uncertainty in the monetary valuation of ecosystem services-A case study at the river basin scale[J]. Science of the Total Environment, 2016, 543: 683-690.
    [16] 约日古丽卡斯木,杨胜天,孜比布拉·司马义. 新疆艾比湖流域土地利用变化对生态系统服务价值的影响[J]. 农业工程学报,2019,35(2):260-269.Yueriguli Kasimu, Yang Shengtian, Zibibula Simayi. Impact of land use change on ecosystem service value in Ebinur Lake Basin, Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(2): 260-269. (in Chinese with English abstract)
    [17] 付意成,高婷,闫丽娟,等. 基于能值分析的永定河流域农业生态补偿标准[J]. 农业工程学报,2013,29(1):209-217.Fu Yicheng, Gao Ting, Yan Lijuan, et al. Agro-ecological compensation standard based on energy analysis in Yongding River basin[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(1): 209-217. (in Chinese with English abstract)
    [18] Green P A, V?r?smarty C J, Harrison I, et al. Freshwater ecosystem services supporting humans: Pivoting from water crisis to water solutions[J]. Global Environmental Change, 2015, 34: 108-118.
    [19] 孙周亮,刘艳丽,刘冀,等. 澜沧江-湄公河流域水资源利用现状与需求分析[J]. 水资源与水工程学报,2018,29(4):67-73.Sun Zhouliang, Liu Yanli, Liu Ji, et al. Analysis on the present situation and demand of water utilization in the Lancang-Mekong River basin[J]. Journal of Water Resources and Water Engineering, 2018, 29(4): 67-73. (in Chinese with English abstract)
    [20] Smajgl A, Ward J. The Water-food-energy Nexus in the Mekong Region[M]. New York: Springer, 2013.
    [21] Li Dongnan, Zhao Jianshi, Govindaraju R S. Water benefits sharing under transboundary cooperation in the Lancang- Mekong River Basin[J]. Journal of Hydrology, 2019, 577: 123989.
    [22] Latham J S, He C, Alinovi L, et al. FAO Methodologies for Land Cover Classification and Mapping[M]. New York: Springer, 2002.
    [23] Costanza R, Arge R, De Groot R, et al. The value of the world's ecosystem services and natural capital[J]. Nature, 1997, 387(6630): 253-260.
    [24] Xie Gaodi, Zhang Caixia, Zhen Lin, et al. Dynamic changes in the value of China's ecosystem services[J]. Ecosystem Services, 2017, 26: 146-154.
    [25] Dugan P J, Barlow C, Agostinho A A, et al. Fish migration, dams, and loss of ecosystem services in the Mekong basin[J]. Ambio, 2010, 39(4): 344-348.
    [26] 胡和兵,刘红玉,郝敬锋,等. 城市化流域生态系统服务价值时空分异特征及其对土地利用程度的响应[J]. 生态学报,2013,33(8):2565-2576.Hu Hebing, Liu Hongyu, Hao Jingfeng, et al. Spatio-temporal variation in the value of ecosystem services and its response to land use intensity in an urbanized watershed[J]. Acta Ecologica Sinica, 2013, 33(8): 2565-2576. (in Chinese with English abstract)
    [27] Delgado-Aguilar M J, Konold W, Schmitt C B. Community mapping of ecosystem services in tropical rainforest of Ecuador[J]. Ecological Indicators, 2017, 73: 460-471.
    [28] Mutoko M C, Hein L, Shisanya C A. Tropical forest conservation versus conversion trade-offs: insights from analysis of ecosystem services provided by Kakamega rainforest in Kenya[J]. Ecosystem Services, 2015, 14: 1-11.
    [29] Yu Dandan, Han Shijie. Ecosystem service status and changes of degraded natural reserves-A study from the Changbai Mountain Natural Reserve, China[J]. Ecosystem Services, 2016, 20: 56-65.
    [30] 郭荣中,申海建,杨敏华,等. 基于生态足迹和服务价值的长株潭地区生态补偿研究[J]. 土壤通报,2017,48(1):70-78.Guo Rongzhong, Shen Haijian, Yang Minhua, et al. Studies on ecological compensation based on ecosystem service value and ecological footprint in Chang-Zhu-Tan region[J]. Chinese Journal of Soil Science , 2017, 48(1): 70-78. (in Chinese with English abstract)
    [31] 黄宝荣,崔书红,李颖明. 中国2000-2010年生态足迹变化特征及影响因素[J]. 环境科学,2016,37(2):420-426.Huang Baorong, Sui Shuhong, Li Yingming, et al. Ecological footprint evolution characteristics and its influencing factors in China from 2000 to 2010[J] . Environmental Science, 2016, 37(2): 420-426. (in Chinese with English abstract)
    [32] Wackernagel M, Schulz N B, Deumling D, et al. Tracking the ecological overshoot of the human economy[J]. Proceedings of the National Academy of Sciences, 2002, 99(14): 9266-9271.
    [33] 刘晋宏,孔德帅,靳乐山. 生态补偿区域的空间选择研究-以青海省国家重点生态功能区转移支付为例[J]. 生态学报,2019,39(1):53-62.Liu Jinhong, Kong Deshuai, Jin Leshan. Research on spatial selection of ecological compensation areas: Using the transfer payment of national key ecological function areas of Qinghai Province as an example[J]. Acta Ecologica Sinica, 2019, 39(1): 53-62. (in Chinese with English abstract)
    [34] 郭荣中,申海建,杨敏华. 澧水流域生态系统服务价值与生态补偿策略[J]. 环境科学研究,2016,29(5):774-782.Guo Rongzhong, Shen Haijian, Yang Minhua. Studies on ecosystem service value and ecological compensation strategy in Lishui River Basin[J]. Research of Environmental Sciences, 2016, 29(5): 774-782. (in Chinese with English abstract)
    [35] Burbano M, Shin S, Nguyen K, et al. Hydrologic changes, dam construction, and the shift in dietary protein in the Lower Mekong River Basin[J]. Journal of Hydrology, 2020, 581: 124454.
    [36] Zhao Cuiwei, Wang Shijie. Benefits and standards of ecological compensation: International experiences and revelations for China[J]. Geographical Research, 2010, 29(4): 597-606.
    [37] 赖敏,吴绍洪,尹云鹤,等. 三江源区基于生态系统服务价值的生态补偿额度[J]. 生态学报,2015,35(2):227-236.Lai Min, Wu Shaohong, Yin Yunhe, et al. Accounting for eco-compensation in the three-river headwaters region based on ecosystem service value[J]. Acta Ecologica Sinica, 2015, 35(2): 227-236. (in Chinese with English abstract)
    [38] McIntyre O. Benefit-sharing and upstream/downstream cooperation for ecological protection of transboundary waters: opportunities for China as an upstream state[J]. Water International, 2015, 40(1): 48-70.
    [39] Sivongxay A, Greiner R, Garnett S T. Livelihood impacts of hydropower projects on downstream communities in central Laos and mitigation measures[J]. Water Resources and Rural Development, 2017, 9: 46-55.
    [40] Olson K R, Morton L W. Water rights and fights: Lao dams on the Mekong River[J]. Journal of Soil and Water Conservation, 2018, 73(2): 35-41.
    [41] 屠酥. 澜沧江-湄公河水资源开发中的合作与争端(1957-2016)[D]. 武汉:武汉大学,2016.Tu Su. Cooperation and Dispute Over Lancang-Mekong Water Resources Development[D]. Wuhan: Wuhan University, 2016. (in Chinese with English abstract)
    [42] Yu Yang, Tang Pingzhong, Zhao Jianshi, et al. Evolutionary cooperation in transboundary river basins[J]. Water Resources Research, 2019, 55: 9977-9994.
    [43] Geheb K, Suhardiman D. The political ecology of hydropower in the Mekong River Basin[J]. Current Opinion in Environmental Sustainability, 2019, 37: 8-13.
    [44] Cosens B, McKinney M, Paisley R, et al. Reconciliation of development and ecosystems: The ecology of governance in the International Columbia River Basin[J]. Regional Environmental Change, 2018, 18(6): 1679-1692.
    [45] Paisley R K, Henshaw T W. Transboundary governance of the Nile River Basin: Past, present and future[J]. Environmental Development, 2013, 7: 59-71.Ecosystem services and benefit compensation mechanism in theMekong River Basin
  • 期刊类型引用(6)

    1. 罗万云,周杨,王小娟. 生态公平视域下额尔齐斯河流域生态补偿标准及空间选择. 生态学报. 2024(21): 9751-9766 . 百度学术
    2. 赵玉攀,于欢,雷光斌,李爱农,边金虎,南希. 基于生态风险评估的湄公河流域生态网络识别. 遥感技术与应用. 2023(01): 116-128 . 百度学术
    3. 赵彤,刘洁,孙玮婕. 基于NPP的青海省草地生态足迹以及生态承载力估算——以海晏县为例. 气象科技进展. 2023(04): 72-79 . 百度学术
    4. 杨洪明,许丁中,项胜,刘城宇,赖明勇,孟科,肖建红. 适应乡村振兴与可持续发展的农村光伏发电生态补偿优化决策. 农业工程学报. 2023(17): 218-226 . 本站查看
    5. 杜贺秋,于铄,张蓬涛,张路路. 京津冀地区水源涵养价值流动分析及生态补偿额度. 生态学报. 2022(23): 9871-9885 . 百度学术
    6. 赵兵兵,刘殿锋. 多情景退耕还林对林地生物多样性保护价值的潜在影响. 农业工程学报. 2022(20): 239-249 . 本站查看

    其他类型引用(3)

计量
  • 文章访问数:  728
  • HTML全文浏览量:  0
  • PDF下载量:  300
  • 被引次数: 9
出版历程
  • 收稿日期:  2020-03-25
  • 修回日期:  2020-05-19
  • 发布日期:  2020-06-30

目录

    /

    返回文章
    返回