高级检索+

基于复合MPC算法的风电机组降载控制

田德, 陈忠雷, 邓英

田德, 陈忠雷, 邓英. 基于复合MPC算法的风电机组降载控制[J]. 农业工程学报, 2020, 36(21): 65-70. DOI: 10.11975/j.issn.1002-6819.2020.21.008
引用本文: 田德, 陈忠雷, 邓英. 基于复合MPC算法的风电机组降载控制[J]. 农业工程学报, 2020, 36(21): 65-70. DOI: 10.11975/j.issn.1002-6819.2020.21.008
Tian De, Chen Zhonglei, Deng Ying. Wind turbine load shedding control based on multi MPC algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(21): 65-70. DOI: 10.11975/j.issn.1002-6819.2020.21.008
Citation: Tian De, Chen Zhonglei, Deng Ying. Wind turbine load shedding control based on multi MPC algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(21): 65-70. DOI: 10.11975/j.issn.1002-6819.2020.21.008

基于复合MPC算法的风电机组降载控制

基金项目: 国家863计划项目智能电网关键技术研发,风电场、光伏电站集群控制系统研究与开发子课题(2011AA05A104)

Wind turbine load shedding control based on multi MPC algorithm

  • 摘要: 随着风电机组单机容量的不断增大,风电机组的关键部件承受的载荷也越来越大,对风电机组可靠性的要求也越来越高,因此,要求风电机组控制策略与技术,既能实现功率优化控制,又能实现降载控制。研究基于模型预测控制(Model Predictive Control,MPC)理论,设计了一种基于风电机组多控制目标的运行区间划分方法的风电机组复合模型预测控制(Multi Model Predictive Control,Multi MPC)控制器。首先建立基于Matlab和TUV GL bladed的联合实时仿真平台,将MPC控制器与传统PI控制器进行对比分析,并以DUV GL Bladed软件中2 MW双馈式风电机组非线性模型作为研究对象,对Multi MPC控制器、MPC控制器和传统的比例积分微分(Proportional Integral Differential,PID)控制器进行了降载控制仿真分析。研究结果表明,Multi MPC控制器能够减小风电机组转速波动幅度,抑制转速超调量,降低传动链的载荷;能够抑制桨距角的波动幅度和变化速率,降低变桨距机构的运行载荷,提高机组运行可靠性。
    Abstract: The proportion of wind power in the global total power supply is also increasing year by year, and the single unit capacity of wind turbine is also increasing. At the same time, the load of the key components of wind turbine is also more and more large, and the reliability requirements of the structure and control technology are also more and more high, so the impact on the stability of the access system is more and more difficult to be ignored. Therefore, the control strategy and technology of wind turbine control system need not only the power optimization control ability, but also the load reduction control ability. The current research status of wind turbine load reduction is investigated, and the research status of model predictive control (MPC) technology is analyzed. Firstly, the wind turbine system, pitch system and drive chain system of wind turbine are modeled and analyzed, which lays the foundation for the further research of wind turbine control technology. Then, the model predictive control technology is studied deeply. Model predictive control is a kind of control algorithm to deal with nonlinear large time-delay system, which is essentially to solve an open-loop optimal control problem. In order to carry out the simulation comparative study, the variable pitch proportional integral controller of wind turbine is designed; based on the theory of model predictive control technology, the model predictive control controller of wind turbine and the multi model predictive control controller of wind turbine are designed. In the design of the model predictive control pitch controller of wind turbine, the cumulative error between the predicted output of the controlled actuator and the expected target is used as the objective optimization function; in the design of the multi model predictive control pitch controller of wind turbine, five continuous and non overlapping wind speed intervals are set, and five model predictions are designed for five different wind speed intervals At the same time, a division method of multi control objectives operation interval of wind turbine is designed to ensure that the multi model predictive control controller of wind turbine can continuously output control signals. Finally, in order to verify the load reduction ability of multi model predictive control controller for wind turbine, a real-time simulation platform based on MATLAB and TUV GL bladed is designed and written in C++. After verifying the advantages of model predictive control of wind turbine compared with traditional proportional integral controller, the nonlinear model of 2MW doubly fed wind turbine in GL bladed software is taken as the research object, and the multi model predictive control controller, model predictive control controller and traditional proportional integral controller of wind turbine are simulated and analyzed. The results show that, compared with the traditional proportional integral controller and model predictive controller, model predictive controller can effectively reduce the fluctuation amplitude of wind turbine speed, restrain the overshoot of speed, reduce the load of the transmission chain of wind turbine, restrain the fluctuation amplitude and change rate of the pitch angle of wind turbine, and reduce the operation of the pitch mechanism of wind turbine Load. It can reduce the operation cost to a certain extent and improve the overall life of wind turbine.
  • [1] Global Wind Energy Council. Global wind report 2019[R]. Brussels, Belgium: Global Wind Energy Council, 2020-03.
    [2] 李俊沅. 风电机组对中工具的设计与应用[J]. 风能,2016(10):82-84.Li Junyuan. Design and application of wind turbine centering tools[J]. Wind Energy, 2016(10): 82-84. (in Chinese with English abstract)
    [3] 张妍,王东风,韩璞. 一种风电场短期风速组合预测模型[J]. 太阳能学报,2017,38(6):1510-1516.Zhang Yan, Wang Dongfeng, Han Pu. Combination forecasting model of short-term wind speed for wind farm[J]. Journal of solar energy, 2017, 38(6): 1510-1516. (in Chinese with English abstract)
    [4] Sang L Q, Takao M, Kamada Y, et al. Experimental investigation of the cyclic pitch control on a horizontal axis wind turbine in diagonal inflow wind condition[J]. Energy, 2017, 134(sep.1): 269-278.
    [5] 赵春溢,廖礼,李东海,等. 5MW风电机组载荷分析与独立变桨控制优化[J]. 电力科学与工程,2019(9):70-78.Zhao Chunyi, Liao Li, Li Donghai, et al. Load analysis and independent pitch control optimization of 5 MW wind turbine[J]. Electric Power Science and Engineering, 2019(9): 70-78. (in Chinese with English abstract)
    [6] Eduardo J N M, Alex M A, Janardan S R, et al. Active load control of large wind turbines using state-space methods and disturbance accommodating control[J]. Energy, 2018, 150(1): 310-319.
    [7] 苑晨阳,李静,陈健云,等. 大型风电机组变桨距ABC-PID控制研究[J]. 太阳能学报,2019,40(10):3002-3008.Yuan Chenyang, Li Jing, Chen Jianyun, et al. Study on variable pitch abc-pid control of large wind turbine[J]. Journal of Solar Energy, 2019, 40(10): 3002-3008. (in Chinese with English abstract)
    [8] 高尚,邓英. 模型预测对减缓风电机组传动链疲劳载荷的作用[J]. 风能,2016(10):72-76.Gao Shang, Deng Ying. The effect of model prediction on reducing the fatigue load of transmission chain of wind turbine[J]. Wind Energy, 2016(10): 72-76. (in Chinese with English abstract)
    [9] 付鹏武,周念成,王强钢,等. 基于时滞模型预测控制算法的网络化AGC研究[J]. 电工技术学报,2014,29(4):188-195.Fu Pengwu, Zhou Niancheng, Wang Qianggang, et al. Research on networked AGC based on time-delay model predictive control algorithm[J]. Journal of Electrical Technology, 2014, 29(4): 188-195. (in Chinese with English abstract)
    [10] 赵国荣,盖後峰,胡正高,等. 非线性模型预测控制的研究进展[J]. 海军航空工程学院学报,2014,29(3):201-208.Zhao Guorong, Gai Junfeng, Hu Zhenggao, et al. Evolution of nonlinear model predictive control research[J]. Journal of Naval Academy of Aeronautical Engineering, 2014, 29(3): 201-208. (in Chinese with English abstract)
    [11] 叶杭冶. 风力发电机组监测与控制[M]. 北京:机械工业出版社,2011.
    [12] Liu W, Li C, Liu Y, et al. Predictive control of wind turbine for load reduction during ramping events[J]. International Journal of Electrical Power and Energy Systems, 2017, 93: 135-145.
    [13] 曹松青,郝万君,陈歆婧,等. 基于模型预测控制的风电机组载荷控制[J]. 苏州科技大学学报:自然科学版,2019,36(3):79-84.Cao Songqing, Hao Wanjun, Chen Xinjing, et al. Load control of wind turbine based on model predictive control[J]. Journal of Suzhou University of Science and Technology: Natural Science Edition, 2019, 36(3): 79-84. (in Chinese with English abstract)
    [14] 朱江生,马奎超,郭庆鼎. 基于模型预测控制的风电机组独立变桨距控制技术的研究[J]. 电气应用,2014,33(23):112-115.Zhu Jiangsheng, Ma Kuichao, Guo Qingding. Research on independent variable pitch control technology of wind turbine based on model predictive control[J]. Electrical Application, 2014, 33(23): 112-115. (in Chinese with English abstract)
    [15] 陈振宇. 大型风力发电系统多目标优化控制研究[D]. 北京:华北电力大学,2018.Chen Zhenyu. Study on Multi-Objective Optimal Control of Large-Scale Wind Power Generation System[D]. Beijing: North China Electric Power University, 2018. (in Chinese with English abstract)
    [16] 沈坤,张少云,刘录光. 双馈风力发电系统模型预测控制算法研究[J]. 电力电子技术,2019,53(9):86-89.Shen Kun, Zhang Shaoyun, Liu Luguang. Research on model predictive control algorithm of doubly fed wind power generation system[J]. Power Electronics Technology, 2019, 53(9): 86-89. (in Chinese with English abstract)
    [17] 孟洪民,刘吉臻,张江昆,等. 采用半自由工况点和分块优化策略的大惯量风力发电系统模型预测控制[J]. 华北电力大学学报:自然科学版,2017,44(4):78-84.Meng Hongmin, Liu Jizhen, Zhang Jiangkun, et al. Model predictive control of large inertia wind power generation system using semi free operating point and block optimization strategy[J]. Journal of North China Electric Power University: Natural Science Edition, 2017, 44(4): 78-84. (in Chinese with English abstract)
    [18] 张靖,李博文,余珮嘉,等. 基于状态空间的双馈风力发电机模型预测控制[J]. 电网技术,2017(9):177-182.Zhang Jing, Li Bowen, Yu Peijia, et al. State space based doubly fed wind turbine model predictive control[J]. Grid Technology, 2017(9): 177-182. (in Chinese with English abstract)
    [19] 刘兴杰,郭九旺,邬旭东,等. 双馈风力发电机组有功功率多模型预测控制[J]. 太阳能学报,2017,38(4):976-982.Liu Xingjie, Guo Jiuwang, Wu Xudong, et al. Multiple model predictive control of active power of doubly fed wind turbine[J]. Journal of Solar Energy, 2017, 38(4): 976-982. (inChinese with English abstract)
    [20] 刘兴杰,王伟,郭九旺,等. 永磁直驱风电机组有功功率预测控制方法研究[J]. 太阳能学报,2018,39(1):210-217.Liu Xingjie, Wang Wei, Guo Jiuwang, et al. Study on active power predictive control method of permanent magnet direct drive wind turbine[J]. Journal of solar energy, 2018, 39(1): 210-217. (in Chinese with English abstract)
    [21] Song Y D, Li P, Liu W, et al. An overview of renewable wind energy conversion system modeling and control[J]. Measurement & Control, 2010, 43(7): 203-208.
    [22] Leithead W E, Connor B. Control of variable speed wind turbines: Dynamic models[J]. International Journal of Control, 2000, 73(13): 1173-1188.
    [23] Thiringer T, Petersson A. Control of a Variable-Speed Pitch-Regulated Wind Turbine[R]. Sweden: Chalmers University of Technology, 2005.
    [24] 周峰. 基于动力学耦合的风电机组载荷控制[D]. 北京:华北电力大学,2017.Zhou Feng. Wind Turbine Load Control Based on Dynamic Coupling[D]. Beijing: North China Electric Power University, 2017. (in Chinese with English abstract)
    [25] Burton T, Jenkins N, Sharpe D, et al. Wind energy handbook[M]. West Sussex: A John Wiley and Sons, Ltd., Publication, 2011.
    [26] 袁鹏,张磊. 风电机组非线性PI变桨控制器设计[J]. 中国测试,2018,44(3):114-119.Yuan Peng, Zhang Lei. Design of nonlinear PI pitch controller for wind turbine[J]. China Test, 2018, 44(3): 114-119. (in Chinese with English abstract)
  • 期刊类型引用(2)

    1. 王欣,李毓明,秦斌. 基于MPC-RBF控制的大型风电机组独立变桨控制策略. 可再生能源. 2025(02): 225-232 . 百度学术
    2. 邹宇航,王明飞,张馨,王利春,魏晓明,郑文刚. 基于模型预测控制的工厂化菇房空调调控方法. 中国农机化学报. 2024(06): 98-105 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  519
  • HTML全文浏览量:  0
  • PDF下载量:  245
  • 被引次数: 4
出版历程
  • 收稿日期:  2020-04-23
  • 修回日期:  2018-06-03
  • 发布日期:  2020-10-31

目录

    /

    返回文章
    返回