高级检索+

软基水闸底板脱空动力学反演模型构建与试验验证

李火坤, 余杰, 王刚, 魏博文, 黄伟, 黄锦林

李火坤, 余杰, 王刚, 魏博文, 黄伟, 黄锦林. 软基水闸底板脱空动力学反演模型构建与试验验证[J]. 农业工程学报, 2020, 36(21): 145-153. DOI: 10.11975/j.issn.1002-6819.2020.21.018
引用本文: 李火坤, 余杰, 王刚, 魏博文, 黄伟, 黄锦林. 软基水闸底板脱空动力学反演模型构建与试验验证[J]. 农业工程学报, 2020, 36(21): 145-153. DOI: 10.11975/j.issn.1002-6819.2020.21.018
Li Huokun, Yu Jie, Wang Gang, Wei Bowen, Huang Wei, Huang Jinlin. Model construction of dynamic inversion and experimental verification for the void of sluice floor on the soft foundation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(21): 145-153. DOI: 10.11975/j.issn.1002-6819.2020.21.018
Citation: Li Huokun, Yu Jie, Wang Gang, Wei Bowen, Huang Wei, Huang Jinlin. Model construction of dynamic inversion and experimental verification for the void of sluice floor on the soft foundation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(21): 145-153. DOI: 10.11975/j.issn.1002-6819.2020.21.018

软基水闸底板脱空动力学反演模型构建与试验验证

基金项目: 国家自然科学基金项目(52079061,51879126,51869011,51779115);江西省杰出青年基金项目(2018ACB21018,20192ACB21022);南昌大学研究生创新专项资金项目(CX2019117)

Model construction of dynamic inversion and experimental verification for the void of sluice floor on the soft foundation

  • 摘要: 软基水闸极易因地基不均匀沉降、渗透变形等发生底板脱空现象,传统的无损检测方法难以在水下探测底板脱空,且不具实时性,其应用还存在一定局限性。该研究基于软基水闸室内物理模型,提出了一种软基水闸底板脱空动力学反演方法。首先,基于多参数变量的底板脱空范围数学模型,改进了反映软基水闸底板脱空参数与水闸动力学参数(模态参数)之间非线性映射关系的数学代理模型;其次,以水闸多测点多阶频率和振型变化率组合作为动力学敏感特征量,建立了软基水闸底板脱空参数反演的目标函数,并基于遗传算法对目标函数进行求解。最后,建立了软基水闸室内物理模型,并在模型中设置3种不同的底板脱空工况,采用软基水闸底板脱空动力学反演方法对软基水闸底板的脱空进行反演识别与模型验证。结果表明:基于动力学参数反演识别的水闸底板脱空区域趋势和脱空面积与模型实际脱空情况吻合较好,3种工况下水闸底板脱空面积反演结果与模型实际脱空面积的相对误差分别为7.47%、6.78%、6.90%,验证了该方法的可靠性,可望为软基水闸实际工程底板脱空隐患检测提供一种新的思路。
    Abstract: As the uneven settlement and seepage deformation of the soft foundation, the floor void is prone to occurring in the sluices built on soft foundation. The traditional non-destructive testing methods are hardly difficult to detect the floor void of the sluices under water, which are non-real time, and their applications still have certain limitations. For the floor of sluice on the soft foundation, it has been under water during the operation period, and new diagnostic methods need to be studied to realize the real-time detection and diagnosis of the floor void of sluice on the soft foundation. The floor void of sluice on the soft foundation will cause the overall constraint boundary conditions of the sluice to change, thereby changing the overall modal parameters of the sluice. The diagnosis of the floor void of sluice on the soft foundation can be realized by establishing the nonlinear mapping relationship between the modal parameters and the floor void parameters of sluice. The method of diagnosing the floor void of sluice on the soft foundation based on modal parameters can realize real-time detection well. Therefore, a dynamic inversion method of the floor void of sluice on the soft foundation is proposed on the basis of the indoor physical model of the sluice on soft foundation in this research. First, based on mathematical model of multi-parameter variables of the floor void of sluice, a mathematical proxy model reflecting the nonlinear mapping relationship between the void parameters of the sluice floor and the dynamic parameters (modal parameters) of the sluice was improved. Second, the combination of the change rate of multi-order frequency and mode shape of multiple measurement points of the sluice was took as the dynamic sensitive characteristic quantity of the parameters inversion, and an objective function for the dynamic inversion of void parameters of sluice floor was established. Then the objective function is optimized through the genetic algorithm. Finally, a physical model of the indoor sluice on soft foundation had been made, and three different conditions of floor void of sluice on the soft foundation were set in the model. The prototype vibration test of the physical sluice on soft foundation on three conditions was carried out, and the corresponding modal parameters of sluice were identified based on the vibration response signal. And the dynamic inversion method of the floor void of sluice on the soft foundation proposed in the paper was used to invert the floor void of sluice and verified by the physical model. The results showed that the trend of floor void of sluice and the void area determined by the inversion method based on dynamic parameters of sluice were in good agreement with the actual condition of the physical model. With the three different conditions, the relative errors between the calculated void area and the actual void area are 7.47%, 6.78%, and 6.90%, respectively, which can confirm the reliability and rationality of the proposed method. The proposed method can provide a new idea for safety detection of the floor void of actual sluice on the soft foundation.
  • [1] 中华人民共和国水利部. 全国水利发展统计公报[M]. 北京:中国水利水电出版社, 2018.
    [2] 倪文进. 中国农村水利发展状况与科技需求[J]. 农业工程学报,2010,26(3):1-8.Ni Wenjin. Development and technology requirement of China rural water conservancy[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(3): 1-8. (in Chinese with English abstract)
    [3] 包加桐, 钱江, 张炜, 等. 基于多通道数据流在线相关分析及聚类的闸站工程安全监测[J]. 农业工程学报, 2019, 35(3):109-116.Bao Jiatong, Qian Jiang, Zhang Wei, et al. Safety monitoring of sluice-pump station project based on online correlation analysis and clustering of multichannel data streams[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(3): 109-116. (in Chinese with English abstract)
    [4] 汪恩良. 寒区水闸计算机辅助设计软件系统开发研究[J]. 农业工程学报,1999,15(2):239-239.Wang Enliang. Research and development of computer aided design software system for sluices in cold area[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 1999, 15(2): 239-239. (in Chinese with English abstract)
    [5] 刘昉,谷欣玉,李文胜,等. 动水关闭的平面事故闸门体型优化试验研究[J]. 农业工程学报,2019,35(12):142-149.Liu Fang, Gu Xinyu, Li Wensheng, et al. Structural optimization of emergency plate gate for closure in moving water[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(12): 142-149. (in Chinese with English abstract)
    [6] 梁民阳,吴兴龙. 浙东海塘上水闸病害成因分析及对策[J]. 中国农村水利水电,2006(7):107-108.Liang Mingyang, Wu Xinglong. Cause and countermeasures of sluice disease in east sea of Zhejiang[J]. China Rural Water and Hydropower, 2006(7): 107-108. (in Chinese with English abstract)
    [7] 张帆. 珠三角地区水闸软土基础沉降处理案例分析[J]. 西北水电,2007(2):50-51, 73.Zhang Fan. Case analysis on soft foundation settlement of sluice gates in delta region around Pear River[J]. Northwest Hydropower, 2007(2): 50-51, 73. (in Chinese with English abstract)
    [8] 何金平,曹旭梅,李绍文,等. 基于安全监测的水闸健康诊断体系研究[J]. 水利水运工程学报,2018(5):1-7.He Jinping, Cao Xumei, Li Shaowen, et al. Analysis of sluice health diagnosis system based on safety monitoring[J]. Hydro-Science and Engineering, 2018(5): 1-7. (in Chinese with English abstract)
    [9] 钟俊纪. 水闸软土地基沉降预测的主要方法[J]. 理论与现代化,2005(S1):131-132.Zhong Junji. Main methods of settlement prediction of sluice on soft foundation[J]. Theory and Modernizatio, 2005(S1): 131-132. (in Chinese with English abstract)
    [10] 陈富强,杨光华,黄致兴,等. 某水闸桩基底板脱空案例分析及设计反思[J]. 建筑科学,2015,31(S2):197-203.Chen Fuqiang, Yang Guanghua, Huang Zhixing, et al. Case analysis and design reflection of a sluice floor void[J]. Building Science, 2015, 31(S2): 197-203. (in Chinese with English abstract)
    [11] 陈仲策. 水闸基础处理方法探讨[J]. 中国防汛抗旱,2010(4):59-60,71.Chen Zhongce. Discussion on foundation treatment method of sluice[J]. China Flood & Drought Management, 2010(4): 59-60, 71. (in Chinese with English abstract)
    [12] 关锦荣. 沿海地区水闸破坏形式与加固对策[J]. 水利科技,2009(3):59-61.Guan Jinrong. Damaged forms of sluices in coastal areas and the strengthening countermeasures[J]. Hydraulic Science and Technology, 2009(3): 59-61. (in Chinese with English abstract)
    [13] 戴呈祥,王士恩. 水闸闸基隐患探测雷达图像特征分析[J]. 地球物理学进展,2003,18(3):429-433.Dai Chenxiang, Wang Shien. Feature analysis on radar pictures for detecting hidden danger of floodgate base[J]. Progress in Geophysics, 2003, 18(3): 429-433. (in Chinese with English abstract)
    [14] 戴呈祥,王士恩. 水闸闸基隐患类型特征分析[J]. 工程地球物理学报,2004,1(4):353-357.Dai Chengxiang, Wang Shien. The character analysis of hidden danger types of the floodgate base[J]. Chinese Journal of Engineering Geophysics, 2004, 1(4): 353-357. (in Chinese with English abstract)
    [15] 杨松华. 地质雷达检测在厦门马銮水闸安全鉴定中的应用[J]. 福建建筑,2011,156(6):73-75.Yang Songhua. The application of ground penetrating radar examination in Xiamen maluan sluice safe appraisal[J]. Fujian Architecture & Construction, 2011, 156(6): 73-75. (in Chinese with English abstract)
    [16] 徐云乾,杨文滨,袁明道,等. 水闸底板渗流隐患的探地雷达检测[J]. 无损检测,2017,39(9):83-86.Xu Yunqiang, Yang Wenbin, Yuan Mingdao, et al. The detection of seepage hazard in sluice gate bottom plate using GPR[J]. Nondestructive Testing, 2017, 39(9): 83-86. (in Chinese with English abstract)
    [17] 吴俊姿. 探地雷达在水闸脱空检测中的应用[J]. 水利技术监督,2018(3):233-236.Wu Junzi. Application of ground penetrating radar in the detection of sluice voids[J]. Technical Supervision in Water Resources, 2018(3): 233-236. (in Chinese with English abstract)
    [18] 安铎,陆新宇,李经纬. 基于探地雷达技术的水闸脱空检测方法研究[J]. 人民长江,2014,45(2):202-205.An Duo, Lu xinyu, Li jingwei. Research on detection method of sluice void based on ground penetrating radar technology[J]. Yangtze River, 2014, 45(2): 202-205. (in Chinese with English abstract)
    [19] 刘金涛,张旭辉,潘展钊,等. 基于探地雷达的水闸水下结构探测[J]. 无损检测,2019,41(5):61-63.Liu Jingtao, Zhang Xuhui, Pan Zhanzhao, et al. Detection of underwater structures of a sluice based on GPR[J]. Nondestructive Testing, 2019, 41(5): 61-63. (in Chinese with English abstract)
    [20] 陈鹦. 无损动态检测闸基隐患[J]. 大坝与安全,1994(1):40-46.Chen Ying. Non-destructive dynamic detection of hidden dangers of gate base[J]. Dam & Safety, 1994(1): 40-46. (in Chinese with English abstract)
    [21] 黄锦林,李火坤,邓冰梅. 基于响应面理论的闸基底板脱空区域识别方法[J]. 中国水利水电科学研究院学报,2018,16(4):249-256.Huang Jinlin, Li Huokun, Deng Bingmei. Identification methods of sluice floor pavement area based on the theory of response surface[J]. Journal of China Institute of Water Resources and Hydropower Research, 2018, 16(4): 249-256. (in Chinese with English abstract)
    [22] Girardi M, Padovani C, Pellegrini D, et al. Finite element model updating for structural applications[J]. Journal of Computational and Applied Mathematics, 2020(370): 112675.
    [23] Hofmeister B, Bruns M, Rolfes R. Finite element model updating using deterministic optimisation: A global pattern search approach[J]. Engineering Structures, 2019(195): 373-381.
    [24] Kang J, Zhang X, Cao H, et al. Research on multi-alternatives problem of finite element model updating based on IAFSA and kriging model[J]. Sensors, 2020, 20(15): 4274.
    [25] 费庆国,韩晓林,苏鹤玲. 响应面有限元模型修正的实现与应用[J]. 振动、测试与诊断,2010,30(2):132-134.Fei Qingguo, Han Xiaolin, Su Heling. Response surface based finite element model updating and its application[J]. Journal of Vibration, Measurement & Diagnosis, 2010, 30(2): 132-134. (in Chinese with English abstract)
    [26] 方磊. 基于LHS抽样的不确定性分析方法在概率安全评价中的应用研究[D]. 合肥:中国科学技术大学,2015.Fang Lei. Application Research of Uncertainty Analysis Method Based on LHS Sampling in Probabilistic Safety Valuation[D]. Hefei: University of Science and Technology of China, 2015. (in Chinese with English abstract)
    [27] Jirutitijaroen P, Singh C. Comparison of simulation methods for power system reliability indexes and their distributions[J]. IEEE Transactions on Power Systems, 2008, 23(2): 486-493.
    [28] Li H, Wang G, Wei B, et al. Dynamic inversion method for the material parameters of a high arch dam and its foundation[J]. Applied Mathematical Modelling, 2019(71): 60-76.
    [29] Li H, Zhong Y, Wei B, et al. Beat vibration mechanism of a sluice pier under high-speed flood discharge excitation [J]. Journal of Low Frequency Noise Vibration and Active Control, 2020, 39(1): 28-43.
    [30] 贺玉龙,张群,陈瑞,等. 成都地铁诱发室内结构噪声实测与分析[J]. 噪声与振动控制,2020,40(2):202-206.He Yulong, Zhang Qun, Chen Rui, et al. Measurements and analyses of indoor ground-borne noise induced by Chengdu metro[J]. Noise and Vibration Control, 2020, 40(2): 202-206. (in Chinese with English abstract)Model construction of dynamic inversion and experimental verification for the void of sluice floor on the soft foundation
  • 期刊类型引用(14)

    1. 李火坤,唐义员,黄伟,柳波,王文韬,朱慧琪. 基于GRU和MOGWO的软基水闸底板脱空动力学智能反演. 应用基础与工程科学学报. 2024(01): 85-99 . 百度学术
    2. 韩坤,王惟璐,黄雪峰,李鹏海,李春生,郑俊林. 基于NGO-CNN-SVM的高标准农田灌溉工程施工成本预测. 农业工程学报. 2024(14): 62-72 . 本站查看
    3. 刘建超. 基于模态参数的软基退洪闸有限元分析. 水利技术监督. 2023(02): 199-203 . 百度学术
    4. 李火坤,柯贤勇,黄伟,刘双平,唐义员,方静. 基于GPR代理模型和GA-APSO混合优化算法的软基水闸底板脱空反演. 振动与冲击. 2023(14): 1-10+29 . 百度学术
    5. 陈艳. 改进Apriori算法的行蓄洪区水闸控制方法. 水利技术监督. 2023(08): 28-30+71 . 百度学术
    6. 张志成,苏晓成,刘志峰,张荣轩,杨尚朴. 基于压力-状态-响应理论的水闸退役决策评价. 济南大学学报(自然科学版). 2023(05): 545-552+558 . 百度学术
    7. 柳厚祥,胡楚鑫. 洞庭湖区软基上的水闸动力响应分析. 交通科学与工程. 2023(05): 45-52+63 . 百度学术
    8. 张方宁,赵琛,王鸿飞,祝福源. 深覆盖层的水闸长效运行结构应力分析. 吉林水利. 2022(02): 49-53 . 百度学术
    9. 李松辉,张龑,黄锦林,叶合欣,罗日洪. 基于弹性波场理论的水下闸底板脱空检测方法及应用. 广东水利水电. 2022(05): 7-12 . 百度学术
    10. 李火坤,方静,黄伟,万子豪,涂源,刘双平. 软基水闸底板脱空反演中的传感器优化布置方法. 水利水电科技进展. 2022(05): 45-51 . 百度学术
    11. 张宇驰,郑亚津. 基于探地雷达的软基水闸闸基隐患诊断方法研究. 江西水利科技. 2022(05): 333-341+346 . 百度学术
    12. 李火坤,涂源,龙思琪,方静,刘双平,邬鹏贞. 基于模态柔度的软基水闸底板脱空范围识别. 水利水运工程学报. 2022(06): 54-61 . 百度学术
    13. 刘双平,柯贤勇,李火坤,李辉,唐义员,涂源,方静. 软基水闸底板脱空反演的响应面模型优化. 南昌大学学报(工科版). 2021(04): 333-340+383 . 百度学术
    19. 李火坤,方静,黄伟,万子豪. 基于MF-EI法的水闸底板脱空参数反演. 振动.测试与诊断. 2024(05): 936-942+1038-1039 . 百度学术

    其他类型引用(5)

计量
  • 文章访问数:  577
  • HTML全文浏览量:  0
  • PDF下载量:  835
  • 被引次数: 19
出版历程
  • 收稿日期:  2020-06-29
  • 修回日期:  2020-10-29
  • 发布日期:  2020-10-31

目录

    /

    返回文章
    返回