高级检索+

网式过滤器拦截率计算及其影响因素分析

张凯, 喻黎明, 刘凯硕, 曹东亮, 李娜, 仵峰

张凯, 喻黎明, 刘凯硕, 曹东亮, 李娜, 仵峰. 网式过滤器拦截率计算及其影响因素分析[J]. 农业工程学报, 2021, 37(5): 123-130. DOI: 10.11975/j.issn.1002-6819.2021.05.014
引用本文: 张凯, 喻黎明, 刘凯硕, 曹东亮, 李娜, 仵峰. 网式过滤器拦截率计算及其影响因素分析[J]. 农业工程学报, 2021, 37(5): 123-130. DOI: 10.11975/j.issn.1002-6819.2021.05.014
Zhang Kai, Yu Liming, Liu Kaishuo, Cao Dongliang, Li Na, Wu Feng. Calculation of interception rate of mesh filter and analysis of its influencing factors[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(5): 123-130. DOI: 10.11975/j.issn.1002-6819.2021.05.014
Citation: Zhang Kai, Yu Liming, Liu Kaishuo, Cao Dongliang, Li Na, Wu Feng. Calculation of interception rate of mesh filter and analysis of its influencing factors[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(5): 123-130. DOI: 10.11975/j.issn.1002-6819.2021.05.014

网式过滤器拦截率计算及其影响因素分析

基金项目: 国家自然科学基金项目(51769009)

Calculation of interception rate of mesh filter and analysis of its influencing factors

  • 摘要: 为了使网式过滤器在工程应用中既保持滤网良好渗透率又提高滤网拦截率,该研究通过试验,分析了5种不同入口压强(0.02、0.04、0.06、0.08、0.10 MPa)、7种滤网孔径(125、150、180、210、250、300和350 μm)及其与砂粒中值粒径的关系对过滤器拦截率的影响。结果表明:当滤网孔径与砂粒中值粒径的比值小于一个阈值C(C∈[1.80,1.88])时,拦截率随着滤网孔径增大而增大,当该值大于此阈值时,拦截率随着滤网孔径的增大而减小;过滤器的入口压强越大,过滤器拦截率越大,入口压强对过滤器拦截率有显著影响,被拦截砂粒在出口侧分布越集中;入口压强从0.02 MPa提高到0.10 MPa,250 μm滤网拦截率提升38.49%,而125 μm滤网拦截率提升88.94%;250 μm滤网在0.10 MPa入口压强下15 min末出水砂粒粒径组成与180 μm、0.02 MPa下初始出水砂粒粒径组成相似,在短时间的灌溉应用上,可调整入口压强而不需要调整设备来满足灌溉要求,研究为实际灌溉工程中提高过滤器拦截率和过滤效果提供了参考。
    Abstract: This study analyzed effects of inlet pressure, filter screen aperture and median particle size of sand on interception rates of filters in order to maintain the good permeability of filter screens and improve the interception rate of the filter screen in the engineering application of the screen filter. A full test and a three-factors-and-three-level orthogonal test were conducted. Five different inlet pressures were designed including 0.02, 0.04, 0.06, 0.08, 0.10 MPa. Seven kinds of filter screen apertures were 125, 150, 180, 210, 250, 300 and 350 μm. The median particle size was from 60 to 300 μm. The results showed that the cake produced in the filtration process was the main reason of the interception phenomenon. The larger the inlet pressure of the filter tended to lead to more significant interception phenomenon and the higher interception rate. The inlet pressure had a very significant impact on the interception rate of the filter. The interception rate increased with the increase of the filter screen aperture when the ratio of the filter screen aperture to the median size of sand was less than a critical range from 1.80 to 1.88. However, the interception rate decreased with the increase of the filter screen aperture when the ratio was higher than the critical range. A model of intercept rate estimation was fitted with the determination of coefficient of 0.94, indicating that the model has a high accuracy. The larger inlet pressure of the filter could result in the more concentrated distribution of intercepted sand particles at the outlet. It indicated that filter performance could be improved by reducing the skeleton density of the filter element at the outlet and designing the filter outlet segment into a circular arc shape with a large front and a small rear to increase the water passing area at the outlet. When the inlet pressure increased from 0.02 MPa to 0.10 MPa, the interception rate of 250 μm filter increased by 38.49%, while that of 125 μm filter increased by 88.94%. At the 15 min of the experiment, the composition of the sand particle size in the outlet water from the 250 μm filter under the inlet pressure of 0.01 MPa was similar to that in the initial outlet from 180 μm filter under the inlet pressure of 0.02 MPa. The filtration accuracy of the filter after a period of operation was more than expected. Therefore, the inlet pressure rather than adjusting the whole equipment could be an option to obtain good performance of filtration during short-term irrigation processes. This study provides valuable information for improving the interception rates and filtration effects of filters in irrigation projects.
  • [1] 张文正,翟国亮,吕谋超,等. 微灌条件下三种过滤器过滤效果试验研究[J]. 灌溉排水学报,2017,36(4):88-93.Zhang Wenzheng, Zhai Guoliang, Lv Mouchao, et al. Experimental study on the efficacy of sand filter, screen filter and disc filter for removing silts from the Yellow River water for micro-irrigation[J]. Journal of Irrigation and Drainage, 2017, 36(4): 88-93. (in Chinese with English abstract)
    [2] 李久生, 栗岩峰, 王军, 等. 微灌在中国:历史、现状和未来[J]. 水利学报,2016,47(3):372-381.Li Jiusheng, Li Yanfeng, Wang Jun, et al. Microirrigation in China: History, current situation and prospects[J]. Journal of Hydraulic Engineering, 2016, 47(3): 372-381. (in Chinese with English abstract)
    [3] 宗全利,刘飞,刘焕芳,等. 滴灌用自清洗网式过滤器排污压差计算方法[J]. 农业机械学报,2012,43(11):107-112.Zong Quanli, Liu Fei, Liu Huanfang, et al. Calculating and experiment on drainage pressure difference of self-cleaning screen filter for drip irrigation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(11): 107-112. (in Chinese with English abstract)
    [4] 李曼,刘贞姬,宗全利,等. 滴灌网式过滤器水头损失试验及分析[J]. 人民黄河,2021,43(2):152-156,161.Li Man, Liu Zhenji, Zong Quanli, et al. Energy loss twstand analysis of horizontal screen filter[J]. Yellow River, 2021, 43(2): 152-156, 161. (in Chinese with English abstract)
    [5] 秦天云,王文娥,胡笑涛. 滴灌系统网式和叠片式过滤器水力性能试验研究[J]. 灌溉排水学报,2017,36(1):57-62.Qin Tianyun, Wang Wen'e, Hu Xiaotao. Hydraulic performance of screen and disc filters for drip irrigation[J]. Journal of Irrigation and Drainage, 2017, 36(1): 57-62. (in Chinese with English abstract)
    [6] 石凯,刘贞姬,李曼. 新型翻板网式过滤器水头损失试验研究[J]. 排灌机械工程学报,2020,38(4):427-432.Shi Kai, Liu Zhenji, Li Man. Experimental study on head loss of a new type of rotatable plate screen filter[J]. Journal of Drainage and Irrigation Machinery Engineering, 2020, 38(4): 427-432. (in Chinese with English abstract)
    [7] Wu W Y, Chen W, Liu H L, et al. A new model for head loss assessment of screen filters developed with dimensional analysis in drip irrigation systems[J]. Irrigation and Drainage, 2014, 63(4): 532-531.
    [8] Anthony S, Christopher T D, Anthony G S, et al. A numerical approach for determining the resistance of fine mesh filters[J]. Transactions of the Canadian Society for Mechancal Engineering, 2018, 43(2): 221-229.
    [9] 喻黎明,徐洲,杨具瑞,等. CFD-DEM耦合模拟网式过滤器局部堵塞[J]. 农业工程学报,2018,34(18):130-137.Yu Liming, Xu Zhou, Yang Jurui, et al. Numerical simulation of localclogging in screen filter based on coupled DEM-CFD[J]. Transactions of The Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(18): 130-137. (in Chinese with English abstract)
    [10] 杨洪飞,宗全利,刘贞姬,等. 大田滴灌用网式过滤器滤网堵塞成因分析[J]. 节水灌溉,2017(2):94-98.Yang Hongfei, Zong Quanli, Liu Zhenji, et al. The analysis of clogging factor for filter Screen in field drip irrigation system[J]. Water Saving Irrigation, 2017(2): 94-98. (in Chinese with English abstract)
    [11] 宗全利,杨洪飞,刘贞姬,等. 网式过滤器滤网堵塞成因分析与压降计算[J]. 农业机械学报,2017,48(9):215-222.Zong Quanli, Yang Hongfei, Liu Zhenji, et al. Clogging reason analysis and pressure drop calculation of screen filter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(9): 215-222. (in Chinese with English abstract)
    [12] 周理强,韩栋,喻黎明,等. 导流片对Y型网式过滤器性能的影响[J]. 农业工程学报,2020,36(12):40-46.Zhou Liqiang, Han Dong, Yu Liming, et al. Effects of guide vanes on performance of Y-screen filter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(12): 40-46. (in Chinese with English abstract)
    [13] 李曼,刘贞姬,石凯. 滴灌用网式过滤器排污效果试验研究[J]. 灌溉排水学报,2019,38(10):55-62.Li Man, Liu Zhenji, Shi Kai. Experimental study on sewage discharge effect of drip irrigation net filter[J]. Journal of Irrigation and Drainage, 2019, 38(10): 55-62. (in Chinese with English abstract)
    [14] 阿力甫江·阿不里米提,虎胆·吐马尔白,木拉提·玉赛音,等. 浑水条件下鱼雷网式过滤器的试验研究[J]. 灌溉排水学报,2018,37(9):79-83.Alipujiang·Abulimiti, Hudan·Tumaerbai, Mulati·Yusaiyin, et al. Efficacy of torpedo screen filter in removing sediments from muddy water[J]. Journal of Irrigation and Drainage, 2018, 37(9): 79-83. (in Chinese with English abstract)
    [15] 陶洪飞,滕晓静,马英杰,等. 出水管角度对网式过滤器内部流场影响研究[J]. 节水灌溉,2017(8):21-25,29.Tao Hongfei, Teng Xiaojing, Ma Yingjie, et al. Influence of outlet angle on the internal flow field of screen filter[J]. Water Saving Irrigation, 2017(8): 21-25, 29. (in Chinese with English abstract)
    [16] 李盛宝,韩启彪,杜思琦,等. 微灌多级复合网式过滤器的设计和试验[J]. 节水灌溉,2020(8):82-84,97.Li Shengbao, Han Qibiao, Du Siqi, et al. The design and test of multi-stage composite screen filter for micro-irrigation[J]. Water Saving Irrigation, 2020(8): 82-84, 97. (in Chinese with English abstract)
    [17] 赛依旦·艾力,盛祥民,崔春亮,等. 高压直冲无压网式过滤器的主体结构设计[J]. 现代农业科技,2020(3):161-162,165.Saiyidan Aili, Sheng Xiangmin, Cui Chunliang, et al. Design of main structure of high pressure direct flushing screen filter[J]. Modern Agricultural Science and Technology, 2020(3): 161-162, 165. (in Chinese with English abstract)
    [18] 徐昭. 移动轮流反冲洗网式过滤器的设计应用[J]. 塑料制造,2016(5):37-39.Xu Zhao. The design and application of mobile turns back flush filter[J]. Plastics Manufacture, 2016(5): 37-39. (in Chinese with English abstract)
    [19] 喻黎明,徐洲,杨具瑞,等. 基于CFD-DEM耦合的网式过滤器水沙运动数值模拟[J]. 农业机械学报,2018,49(3):303-308.Yu Liming, Xu Zhou, Yang Jurui, et al. Numerical simulation of water and sediment movement in screen filter based on coupled CFD-DEM[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(3): 303-308. (in Chinese with English abstract)
    [20] Tao H F, Teng X J, Zhao J H, et al. Numerical simulation of internal flow field in automatic screen filter under different flow[J]. Water Resources and Power, 2016, 34(12): 180-185.
    [21] Tao H F, Teng X J, Ma Y J, et al. Numerical simulation and structural optimization of direct-washing screen filter[J]. Water Resources and Power, 2017, 35(8): 98-102.
    [22] 阿力甫江·阿不里米提,虎胆·吐马尔白,木拉提·玉赛音,等. 微灌鱼雷网式过滤器全流场数值模拟[J]. 农业工程学报,2017,33(3):107-112.Alipujiang·Abulimiti, Hudan·Tumaerbai, Mulati·Yusa iyin, et al. Numerical simulation on flow field of screen filter with torpedo in micro-irrigation[J]. Transactions of The Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(3): 107-112. (in Chinese with English abstract)
    [23] 陶洪飞,朱玲玲,马英杰,等. 滤网孔径对网式过滤器内部流场的影响[J]. 灌溉排水学报,2017,36(12):68-74.Tao Hongfei, Zhu Lingling, Ma Yingjie, et al. The effect of screen aperture on internal flow field in automatic screen filter[J]. Journal of Irrigation and Drainage, 2017, 36(12): 68-74. (in Chinese with English abstract)
    [24] 文棋. 全自动自清洗过滤器过滤机理分析及控制系统研究[D]. 杭州:浙江大学,2004.Wen Qi. Research on Filter Mechanism Analysis and Control System of Automatic Self-Cleaning Filter[D]. Hangzhou: Zhejiang University, 2004. (in Chinese with English abstract)
  • 期刊类型引用(12)

    1. 朱春光,王朝晖,田喆,许健,旷金国,胡优彬. 大管径Y型过滤器流动阻力特性数值模拟及实验研究. 天津大学学报(自然科学与工程技术版). 2024(05): 462-472 . 百度学术
    2. 陶洪飞,李琦,周洋,马合木江·艾合买提,李巧,姜有为. 基于PPR和NSGA-Ⅱ的泵前微压过滤器水力与过滤性能研究. 灌溉排水学报. 2024(05): 30-37+78 . 百度学术
    3. 郑长娟,朱德兰,高洒洒,张锐,赵泽晋,李路明,KHUDAYBERDI Nazarov,柳昌新. 网式过滤器水头损失动态变化规律. 农业工程学报. 2024(08): 62-70 . 本站查看
    4. 陶洪飞,杨玉敏,吴梓境,马合木江·艾合买提,李巧,姜有为,杨文新. 基于投影寻踪回归方法的微压过滤冲洗池水头损失与过滤效率预测模型. 水资源与水工程学报. 2024(03): 207-216 . 百度学术
    5. 刘贞姬,杨昊,李洁,雷辰宇. 串联网式过滤器泥沙拦截效果试验研究. 水资源与水工程学报. 2024(04): 198-205 . 百度学术
    6. 赵瑛,张双侠,吴玉秀,蒋坤. 复杂灌溉区悬浮自洁式泵前过滤器优化设计研究. 中国农机化学报. 2024(09): 291-296 . 百度学术
    7. 郑长娟,朱德兰,张锐,赵泽晋,李路明. 过滤孔径可调的叠片过滤器设计及其水力性能. 农业工程学报. 2024(21): 64-73 . 本站查看
    8. 喻黎明,李俊锋,李娜,陈祖根,赵思懿,王艳青. 不同网孔与筒体模型对Y型网式过滤器性能的影响. 农业工程学报. 2023(14): 97-105 . 本站查看
    9. 宗全利,刘贞姬,井河义,张明鸣. 微灌系统泵前无压网式过滤器过滤效率研究. 水资源与水工程学报. 2023(05): 207-214 . 百度学术
    10. 袁寄望 ,朱德兰 ,高洒洒 ,孙少博 ,赵航 ,张锐 . 叠片过滤器水头损失变化规律及杂质拦截特征. 农业工程学报. 2022(13): 114-122 . 本站查看
    11. 喻黎明,曹东亮,李久霖,李娜,韩栋,邵社刚. Y型网式过滤器多目标优化正交试验. 农业机械学报. 2022(09): 322-333 . 百度学术
    12. 李恺,尹义蕾,侯永,王春辉,张凌风,潘守江. 水肥一体化工程中的过滤设备及应用建议. 农业工程技术. 2021(31): 52-58 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数:  735
  • HTML全文浏览量:  0
  • PDF下载量:  306
  • 被引次数: 19
出版历程
  • 收稿日期:  2020-10-29
  • 修回日期:  2021-01-12
  • 发布日期:  2021-02-28

目录

    /

    返回文章
    返回