高级检索+

增温对保护性耕作下冬小麦籽粒蛋白质含量的影响

杨广, 孔祥飞, 侯瑞星, 欧阳竹

杨广, 孔祥飞, 侯瑞星, 欧阳竹. 增温对保护性耕作下冬小麦籽粒蛋白质含量的影响[J]. 农业工程学报, 2022, 38(6): 80-88. DOI: 10.11975/j.issn.1002-6819.2022.06.009
引用本文: 杨广, 孔祥飞, 侯瑞星, 欧阳竹. 增温对保护性耕作下冬小麦籽粒蛋白质含量的影响[J]. 农业工程学报, 2022, 38(6): 80-88. DOI: 10.11975/j.issn.1002-6819.2022.06.009
Yang Guang, Kong Xiangfei, Hou Ruixing, Ouyang Zhu. Effects of warming on the protein content of winter wheat grains under the conservation tillage[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(6): 80-88. DOI: 10.11975/j.issn.1002-6819.2022.06.009
Citation: Yang Guang, Kong Xiangfei, Hou Ruixing, Ouyang Zhu. Effects of warming on the protein content of winter wheat grains under the conservation tillage[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(6): 80-88. DOI: 10.11975/j.issn.1002-6819.2022.06.009

增温对保护性耕作下冬小麦籽粒蛋白质含量的影响

基金项目: 中国科学院战略性先导科技专项(XDA23050102);国家自然科学基金资助项目(32071607,U1803244,51769030);兵团科技攻关计划项目(2021AB021);石河子大学科技项目(CXRC201801,RCZK2018C22)

Effects of warming on the protein content of winter wheat grains under the conservation tillage

  • 摘要: 冬小麦是世界主要粮食作物之一,气候变暖可能显著影响冬小麦籽粒蛋白质含量,但其影响机制还不明确。针对该问题,该研究在中国冬小麦主产区华北平原开展连续3 a(2017-2019)免耕(No Tillage,NT)和常规耕作(Conventional Tillage,CT)下的田间增温试验。结果表明,增温提前了冬小麦返青期,延长了冬小麦营养生长阶段时长,提高了冬小麦叶面积指数和群体净光合速率。2019年增温处理下冬小麦开花期茎叶氮素积累量提升了20.17%(CT)、99.21%(NT),花后茎叶氮素转移量提升了24.62%(CT)、134.21%(NT),茎叶氮素对籽粒的贡献率提升了2.43%(CT)、46.10%(NT)。增温影响了冬小麦产量构成,增温下冬小麦有效小穗数略减,部分年限千粒质量略增。NT处理增温增产,CT处理增温增产不明显,总的趋势为NT处理连续3 a平均产量低于CT处理。增温还显著提升了冬小麦籽粒蛋白质含量(P<0.05),连续3 a平均籽粒蛋白质含量提升了14.28%(CT)、17.39%(NT)。综上,研究表明增温会通过改变冬小麦生理特征显著促进氮素向籽粒转化,并且增温下冬小麦有效小穗数减少使得原本将进入更多籽粒中去的氮素都进入到最终有效籽粒中去,进而显著增加籽粒蛋白质含量。研究结果可为气候变化对冬小麦籽粒蛋白质含量的影响提供科学依据。
    Abstract: Abstract: Winter wheat (Triticum aestivum L.) is one of the major food crops in the world. Climate warming has dominated the growth and yield of winter wheat, particularly the protein formation and content of grains. But, the effects of warming on the protein content still remain unclear so far. Taking "Ji Mai 22" as the test material, this study aims to determine the specific effects of climate warming on the winter wheat growth and development, yield, and grain protein content. Climate warming was also simulated with an infrared warming device. Field warming experiments were conducted under the No Tillage (NT), and Conventional Tillage (CT) in the North China Plain for three consecutive years (2017-2019). The results showed that the open field warming reduced the overwintering period, indicating a significant shift in the regreening period. The nutritional growth period was then prolonged for the nitrogen accumulation time in the pre-anthesis period of plants. There was an increase in the Leaf Area Index (LAI) at the regreening-anthesis period, the net photosynthetic rate at the regreening-maturity period, and the aboveground dry mass of winter wheat. 20.17% (CT) and 99.21% (NT) of nitrogen accumulation in the winter wheat stems and leaves at the anthesis period, respectively, whereas, 24.62% (CT) and 134.21% (NT) of nitrogen transfer in the stems and leaves after anthesis increased by the warming in 2019, and the contribution of nitrogen in the stems and leaves contribution to seeds increased by 2.43% (CT), and 46.10% (NT). The NT warming increased the yield, where the NT yield was on average lower than that of CT. The CT yield of warmed winter wheat decreased by 2.14% and 4.62% in 2017 and 2018, respectively, and increased by 7.05% in 2019, whereas, the NT yield increased by 5.54% (2017), 34.44% (2018), and 42.25% (2019), respectively. The winter wheat yield in 2018 was significantly lower than that in 2017 and 2019. The reason was that the excessive precipitation in spring inhibited the winter wheat growth and development, leading to less yield in 2018. The temperature greatly contributed to the protein content of winter wheat grains, with an average increase of 14.28% (CT) and 17.39% (NT) for three consecutive years, compared with the control group. Therefore, the temperature promoted the conversion of nitrogen to the grain via the physiological characteristics of winter wheat. The reduction in effective spikelets number allowed the nitrogen for more grains to enter the final effective grain number, thus significantly increasing the grain protein content at high temperatures. The soil temperature under the NT was lower than that under the CT. The soil temperature was slower to rise in early spring, which affected the greening and early growth of wheat, resulting in the lower initial values of LAI, and net photosynthetic rate of winter wheat under the NT. The NT under the warming treatment reduced the post-anthesis soil temperature, but increased the soil water content, indicating the better wheat growth under a high post-anthesis temperature environment, compared with the CT. There was no significant difference in the grain protein content between CT and NT. This finding can provide a strong reference for the effect of climate warming on the protein content of winter wheat seeds under conservation tillage.
  • [1] IPCC. Computational Geometry 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[R]. Cambridge: Cambridge University Press, 2013.
    [2] Tilman D, Balzer C, Hill J, et al. Global food demand and the sustainable intensification of agriculture[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(50): 20260-20264.
    [3] Asseng S, Martre P, Maiorano A, et al. Climate change impact and adaptation for wheat protein[J]. Global change biology, 2019, 25(1): 155-173.
    [4] 姚素梅,康跃虎,茹振钢,等. 喷灌对冬小麦植株氮素积累和运转的影响[C]. 中国农业工程学会2011年学术年会论文集. 北京:中国学术期刊电子出版社, 2011.Yao Sumei, Kang Yuehu, Ru Zhengang, et al. Effects of sprinkler irriagation on Nitrogen accumulation and translocation of winter wheat[C]. Proceedings of the 2011 Annual Academic Conference of the Chinese Society of Agricultural Engineering. Beijing: China Academic Journal Electronic Publishing House, 2011. (in Chinese with English abstract)
    [5] Lazauskas S, Povilaitis V, Antanaitis ?, et al. Winter wheat leaf area index under low and moderate input management and climate change[J]. Journal of Food Agriculture & Environment, 2012, 10(1): 588-593.
    [6] Wan S, Xia J, Liu W, et al. Photosynthetic overcompensation under nocturnal warming enhances grassland carbon sequestration[J]. Ecology, 2009, 90(10): 2700-2710.
    [7] Hou R, Ouyang Z, Li Y, et al. Is the change of winter wheat yield under warming caused by shortened reproductive period?[J]. Ecology & Evolution, 2012, 2(12): 2999-3008.
    [8] Hou R, Xu X, Ouyang Z. Effect of experimental warming on nitrogen uptake by winter wheat under conventional tillage versus no-till systems[J]. Soil and Tillage Research, 2018, 180: 116-125.
    [9] Bai E, Li S, Xu W, et al. A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics[J]. New Phytologist, 2013, 199(2): 441-451.
    [10] Rustad L, Campbell J, Marion G, et al. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming[J]. Oecologia, 2001, 126(4): 543-562.
    [11] 张建平,赵艳霞,王春乙,等. 气候变化对我国华北地区冬小麦发育和产量的影响[J]. 应用生态学报,2006, 17(7):1179-1184.Zhang Jianping, Zhao Yanxia, Wang Chunyi, et al. Impacts of climate change on the development and yield of winter wheat in northern China[J]. Journal of Applied Ecology, 2006, 17(7): 1179-1184. (in Chinese with English abstract)
    [12] Vogel E, Donat M G, Alexander L V, et al. The effects of climate extremes on global agricultural yields[J]. Environmental Research Letters, 2019, 14(5): 54010.
    [13] 田云录,陈金,邓艾兴,等. 开放式增温下非对称性增温对冬小麦生长特征及产量构成的影响[J]. 应用生态学报,2011,22(3):681-686.Tian Yunlu, Chen Jin, Deng Aixing, et al. Effects of asymmetric warming on growth characteristics and yield components of winter wheat under open warming[J]. Journal of Applied Ecology, 2011, 22(3): 681-686. (in Chinese with English abstract)
    [14] Wang J, Hasegawa T, Li L, et al. Changes in grain protein and amino acids composition of wheat and rice under short-term increased [CO2] and temperature of canopy air in a paddy from East China[J]. New Phytologist, 2019, 222(2): 726-734.
    [15] 王大成,李存军,宋晓宇,等. 基于神经网络的冬小麦蛋白质含量关键生态影响因子分析[J]. 农业工程学报,2010(7):220-226.Wang Dacheng, Li Cunjun, Song Xiaoyu, et al. Analysis of key ecological influences on protein content of winter wheat based on neural network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010(7): 220-226. (in Chinese with English abstract)
    [16] Benzian B, Lane P W. Protein concentration of grain in relation to some weather and soil factors during 17 years of english winter-wheat experiments[J]. Journal of the Science of Food and Agriculture, 2010, 37(5): 435-444.
    [17] Spiertz J, Hamer R J, Xu H, et al. Heat stress in wheat (Triticum aestivum L.): Effects on grain growth and quality traits[J]. European Journal of Agronomy, 2006, 25(2): 89-95.
    [18] 江晓东,迟淑筠,李增嘉,等. 少免耕模式对冬小麦花后旗叶衰老和产量的影响[J]. 农业工程学报,2008,24(4):55-58.Jiang Xiaodong, Chi Shuyun, Li Zengjia, et al. Effect of less no-till pattern on post-flowering flag leaf senescence and yield of winter wheat[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(4): 55-58. (in Chinese with English abstract)
    [19] 江晓东,迟淑筠,李增嘉,等. 不同土壤耕作模式对冬小麦籽粒品质的影响[J]. 农业工程学报,2007,23(7):54-57.Jiang Xiaodong, Chi Shuyun, Li Zengjia, et al. Effect of different soil tillage patterns on grain quality of winter wheat[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(7): 54-57. (in Chinese with English abstract)
    [20] Sherry R, Zhou X, Gu S, et al. Divergence of reproductive phenology under climate warming[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(1): 198-202.
    [21] Ortiz R, Sayre K D, Govaerts B, et al. Climate change: Can wheat beat the heat?[J]. Agriculture, Ecosystems & Environment, 2008, 126(1-2): 46-58.
    [22] Sadras V O, Monzon J P. Modelled wheat phenology captures rising temperature trends: Shortened time to flowering and maturity in Australia and Argentina[J]. Field Crops Research, 2006, 99(2-3): 136-146.
    [23] Xiao D, Tao F, Liu Y, et al. Observed changes in winter wheat phenology in the North China Plain for 1981-2009[J]. International Journal of Biometeorology, 2013, 57(2): 275-285.
    [24] Challinor A J, Watson J, Lobell D B, et al. A meta-analysis of crop yield under climate change and adaptation[J]. Nature Climate Change, 2014, 4(4): 287-291.
    [25] Tian Y, Chen J, Chen C, et al. Warming impacts on winter wheat phenophase and grain yield under field conditions in Yangtze Delta Plain, China[J]. Field Crops Research, 2012, 134: 193-199.
    [26] Tao F, Zhang Z. Climate change, wheat productivity and water use in the North China Plain: A new super-ensemble-based probabilistic projection[J]. Agricultural and forest meteorology, 2013, 170: 146-165.
    [27] Batts G R, Morison J, Ellis R H, et al. Effects of CO2 and temperature on growth and yield of crops of winter wheat over four seasons[J]. European Journal of Agronomy, 1997, 7(1-3): 43-52.
    [28] Bogard M, Allard V, Brancourt-Hulmel M, et al. Deviation from the grain protein concentration-grain yield negative relationship is highly correlated to post-anthesis N uptake in winter wheat[J]. Journal of experimental botany, 2010, 61(15): 4303-4312.
    [29] 赵辉,荆奇,戴廷波,等. 花后高温和水分逆境对小麦籽粒蛋白质形成及其关键酶活性的影响[J]. 作物学报,2007,33(12):2021-2027.Zhao Hui, Jing Qi, Dai Tingbo, et al. Effects of post-flowering heat and water adversity on protein formation and its key enzyme activities in wheat seeds[J]. Journal of Crop Science, 2007, 33(12): 2021-2027. (in Chinese with English abstract)
    [30] Thomsen I K, S?rensen P. Tillage-induced N mineralizationand N uptake in winter wheat on a coarse sandy loam[J]. Soil and Tillage Research, 2006, 89(1): 58-69.
    [31] Lal R. Soil quality impacts of residue removal for bioethanol production[J]. Soil and tillage research, 2009, 102(2): 233-241.
    [32] Busari M A, Kukal S S, Kaur A, et al. Conservation tillage impacts on soil, crop and the environment[J]. International soil and water conservation research, 2015, 3(2): 119-129.
    [33] Ogle S M, Alsaker C, Baldock J, et al. Climate and soil characteristics determine where no-till management can store carbon in soils and mitigate greenhouse gas emissions[J]. Scientific reports, 2019, 9(1): 1-8.
  • 期刊类型引用(8)

    1. 时运佳,朱梅,袁宏伟,曹秀清,刘硕硕. 淮北地区旱涝急转对冬小麦产量及品质影响及差异性研究. 节水灌溉. 2025(04): 110-117 . 百度学术
    2. 金丽惠,杨海超,王校益,苗淑杰,乔云发. 增温背景下不同土壤对冬小麦产量品质影响评价. 中国农业气象. 2024(03): 293-307 . 百度学术
    3. 云望舒,刘德鸿,寇太记,赖路宽,夏东方. 增温条件下生物炭和腐殖酸改良铜污染土壤对小麦吸持养分的影响. 干旱地区农业研究. 2024(05): 189-197 . 百度学术
    4. 郝志豪,郑恩来,李勋,姚昊萍,汪小旵,钱生越,李伟勋,朱敏. 免耕播种机旋耕刀耕作性能分析与结构优化. 农业工程学报. 2023(02): 1-13 . 本站查看
    5. 孔祥飞,李超,杨广,侯冠群,柳为,许新港,欧阳竹,侯瑞星. 基于Meta分析研究气候变化对中国小麦籽粒蛋白质含量的影响. 农业工程学报. 2023(11): 118-127 . 本站查看
    6. 康艳,廖庆喜,廖宜涛,韩静轩,程昊,张青松. 油菜宽幅折叠式浅旋精量联合直播机设计与试验. 农业机械学报. 2023(08): 42-52+109 . 百度学术
    7. 李园园,郗长军,薛彩霞,柴朝卿,李卫,姚顺波. 陕西省保护性耕作净碳汇的时空演变及差异性分析. 农业工程学报. 2023(23): 123-132 . 本站查看
    8. 朱惠斌,吴宪,白丽珍,钱诚,赵浩然,李慧. 基于EDEM-ADAMS仿真的稻茬地双轴破茬免耕装置研制. 农业工程学报. 2022(19): 10-22 . 本站查看

    其他类型引用(6)

计量
  • 文章访问数:  193
  • HTML全文浏览量:  0
  • PDF下载量:  295
  • 被引次数: 14
出版历程
  • 收稿日期:  2021-12-13
  • 修回日期:  2022-03-11
  • 发布日期:  2022-03-30

目录

    /

    返回文章
    返回