高级检索+

基于遥感影像研究极端暴雨条件下新成切沟发生发展规律

杨丽娟, 王春梅, 张春妹, 庞国伟, 龙永清, 王雷, 刘宝元, 杨勤科

杨丽娟, 王春梅, 张春妹, 庞国伟, 龙永清, 王雷, 刘宝元, 杨勤科. 基于遥感影像研究极端暴雨条件下新成切沟发生发展规律[J]. 农业工程学报, 2022, 38(6): 96-104. DOI: 10.11975/j.issn.1002-6819.2022.06.011
引用本文: 杨丽娟, 王春梅, 张春妹, 庞国伟, 龙永清, 王雷, 刘宝元, 杨勤科. 基于遥感影像研究极端暴雨条件下新成切沟发生发展规律[J]. 农业工程学报, 2022, 38(6): 96-104. DOI: 10.11975/j.issn.1002-6819.2022.06.011
Yang Lijuan, Wang Chunmei, Zhang Chunmei, Pang Guowei, Long Yongqing, Wang Lei, Liu Baoyuan, Yang Qinke. Occurrence and development of newly formed gullies under extreme rainstorm conditions using remote sensing images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(6): 96-104. DOI: 10.11975/j.issn.1002-6819.2022.06.011
Citation: Yang Lijuan, Wang Chunmei, Zhang Chunmei, Pang Guowei, Long Yongqing, Wang Lei, Liu Baoyuan, Yang Qinke. Occurrence and development of newly formed gullies under extreme rainstorm conditions using remote sensing images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(6): 96-104. DOI: 10.11975/j.issn.1002-6819.2022.06.011

基于遥感影像研究极端暴雨条件下新成切沟发生发展规律

基金项目: 国家自然科学基金项目(41977062、41601290);国家重点实验室基金(A314021402-2016);陕西省重点科技创新团队项目(2014KCT-27)

Occurrence and development of newly formed gullies under extreme rainstorm conditions using remote sensing images

  • 摘要: 土壤侵蚀严重破坏土地资源,是全球性的环境问题,切沟侵蚀是土壤侵蚀的重要表现形式,近年来极端暴雨频发加剧了切沟侵蚀的发生和发展。为了研究气候变化条件下新成切沟的形成与发育规律,该研究以陕北子洲岔巴沟流域王武沟小流域为研究区,基于无人机航摄影像,以2017年陕北"7·26"暴雨新成切沟为研究对象,分析新成切沟发生规律,并探讨在之后的3 a中其发育特征、与原有切沟发育的差异性及其与地形参数的关系。结果表明:1)在"7·26"暴雨中,王武沟发育新成切沟45条,约101条/km2,可分为坡面切沟、梯田切沟、道路切沟和底部切沟四类,以坡面切沟最多,底部切沟和梯田切沟总体更宽、面积更大;生产道路、淤地坝和坡耕地在暴雨条件下是最容易发生切沟的地块;2) 新成切沟在形成之后的3 a内沟头发育较原有切沟更为迅速。34.48%的新成切沟沟头进一步前进,这一数值为原有切沟的1.32倍;新成切沟前进距离均值是原有切沟的3倍,达0.58 m/a;3)汇水面积增加可显著促进切沟沟头发育,是模拟切沟沟头前进速率的重要地形指标。可见,极端降雨条件下研究区土壤侵蚀严重,新成切沟发生之后的3 a内溯源尤为迅速,应给予特别关注,加强对这类切沟的预防与治理。
    Abstract: Abstract: Soil erosion has posed some serious damage on the land resources in the world. The "Grain for Green" project in 1999 has been launched to restore the vegetation on the steep slope farmlands and control the soil and water loss for a better ecological environment of the Loess Plateau in China. But, the frequent extreme rainstorms have aggravated the occurrence and development of gully erosion under global warming in recent years. The development of the gullies after the extreme rainstorm still remains unclear so far. Fortunately, the Unmanned Aerial Vehicle (UAV) data can be collected fast, accurately, and efficiently after a rainstorm. The flexible acquisition time of UAVs can be expected to serve as an effective tool for the development of gully. Taking the Wangwugou Small Watershed of Chabagou Watershed on the Loess Plateau as the research area, this study aims to investigate the formation and development of gully under a rainstorm using UAV images. A case study selected the "7·26" extreme rainfall that occurred in Northern Shaanxi of China on July 26, 2017, with a daily rainfall of 206.6 mm. The patterns of newly formed gullies were captured under the climate. An equation with the topographic parameters was established for the occurrence and development of newly formed gullies in the following three years. The results showed that: 1) There were 45 newly formed gullies during the extreme rainstorm, which were about 101 gully/km2 in total. Four types were divided, including the hill slope, terraced field, unpaved roadway, and bottom gullies. There were more gullies found on the slopping hills. The bottom and terraced field gullies presented much wider and larger in the study area. The unpaved roads, check dam farmland, and sloping farmland were more prone to the gullies. 2) In the three years after the formation of the new gullies, the development of the new gully heads was faster than that of the original, 34.48% of which were further advanced, indicating 1.32 times the original. The average gully head retreat rate of newly formed gullies was three times that of the original, up to 0.58 m/a, where the maximum speed reached 2.12 m/a. 3) The drainage area significantly promoted the development of gully heads. A critical topographic index was selected to simulate the retreat rate of gully heads. There was more severe soil erosion under extreme rainfall conditions. The source of newly formed gullies was rapidly traced within three years after the occurrence. Therefore, the appropriate management can be attached to prevent such gullies during this time. This finding can provide an essential reference to estimate the rill erosion on the different types of sloping land in the hilly area of Loess Plateau.
  • [1] 唐克丽. 中国水土保持[M]. 北京:科学出版社,2004.
    [2] 陈发虎,傅伯杰,夏军,等. 近70年来中国自然地理与生存环境基础研究的重要进展与展望[J]. 中国科学:地球科学,2019,49(11):1659-1696.Chen Fahu, Fu Bojie, Xia Jun, et al. Major advance in studies of physical geography and living environment of China during the past 70 years and future prospects[J]. Scientia Sinica (Terrae), 2019, 49(11): 1659-1696. (in Chinese with English abstract)
    [3] 刘宝元,杨扬,陆绍娟. 几个常用土壤侵蚀术语辨析及其生产实践意义[J]. 中国水土保持科学,2018,16(1):9-16.Liu Baoyuan, Yang Yang, Lu Shaojuan. Discrimination on common soil erosion terms and their implications for soil and water conservation[J]. Science of Soil and Water Conservation, 2018, 16(1): 9-16. (in Chinese with English abstract)
    [4] 郑粉莉,徐锡蒙,覃超. 沟蚀过程研究进展[J]. 农业机械学报,2016,47(8):48-59,116.Zheng Fenli, Xu Ximeng, Qin Chao. A review of gully erosion process research[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(8): 48-59, 116. (in Chinese with English abstract)
    [5] 陈卓鑫,王文龙,康宏亮,等. 特大暴雨下不同土地利用类型坡面切沟发育特征[J]. 农业工程学报,2020,36(23):77-84.Chen Zhuoxin, Wang Wenlong, Kang Hongliang, et al. Gully development characteristics of the slopes for different land-use types under extreme rainstorms[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(23): 77-84. (in Chinese with English abstract)
    [6] 张姣,郑粉莉,温磊磊,等. 利用三维激光扫描技术动态监测沟蚀发育过程的方法研究[J]. 水土保持通报,2011,31(6):89-94.Zhang Jiao, Zheng Fenli, Wen Leilei, et al. Methodology of dynamic monitoring gully erosion process using 3D laser scanning technology[J]. Bulletin of Soil and Water Conservation, 2011, 31(6): 89-94. (in Chinese with English abstract)
    [7] 王雷,龙永清,徐佳,等. 黄土侵蚀沟稳定性监测与初步分析[J]. 地理与地理信息科学,2017,33(1):119-122.Wang Lei, Long Yongqing, Xu Jia, et al. The monitoring and preliminary analysis of the stability of erosion gullies in Loess Plateau[J]. Geography and Geo-Information Science, 2017, 33(1): 119-122. (in Chinese with English abstract)
    [8] 杨力华,庞国伟,杨勤科,等. 近50年来王茂沟流域侵蚀沟变化及其影响因素[J]. 水土保持学报,2020,34(2):64-70.Yang Lihua, Pang Guowei, Yang Qinke, et al. Changes and influencing factors of erosion gully in Wangmaogou Watershed in the last 50 Years[J]. Journal of Soil and Water Conservation, 2020, 34(2): 64-70. (in Chinese with English abstract)
    [9] 陈一先,焦菊英,魏艳红,等. 陕北黄土区退耕前1976-1997坡面切沟发育特征[J]. 农业工程学报,2017,33(17):120-127.Chen Yixian, Jiao Juying, Wei Yanhong, et al. Characteristics of gully development in Northern Shaanxi Hilly Loess Region before Grain-for-Green Programme (1976-1997)[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(17): 120-127. (in Chinese with English abstract)
    [10] Guan Y B, Yang S T, Zhao C S, et al. Monitoring long-term gully erosion and topographic thresholds in the marginal zone of the Chinese Loess Plateau[J]. Soil and Tillage Research, 2021, 205:104800.
    [11] Yuan M T, Zhang Y, Zhao Y Y, et al. Effect of rainfall gradient and vegetation restoration on gully initiation under a large-scale extreme rainfall event on the hilly Loess Plateau: A case study from the Wuding River basin, China[J]. Science of the Total Environment, 2020, 739:140066.
    [12] 王颢霖,焦菊英,唐柄哲,等. 陕北子洲"7·26"暴雨后坡耕地细沟侵蚀及其影响因素分析[J]. 农业工程学报,2019,35(11):122-130.Wang Haolin, Jiao Juying, Tang Bingzhe, et al. Characteristics of rill erosion and its influencing factors inslope farmland after "7. 26" rainstorm in Zizhou County, Shaanxi Province[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(11): 122-130. (in Chinese with English abstract)
    [13] Wang C M, Liu B Y, Yang Q K, et al. Unpaved road erosion after heavy storms in mountain areas of northern China[J]. International Soil and Water Conservation Research, 2021, 10(1): 29-37.
    [14] 刘宝元,刘晓燕,杨勤科,等. 黄土高原小流域水土流失综合治理抗暴雨能力考察报告[J]. 水土保持通报,2017,37(4):2,349-350.
    [15] 王楠,陈一先,白雷超,等. 陕北子洲县"7·26"特大暴雨引发的小流域土壤侵蚀调查[J]. 水土保持通报,2017,37(4):338-344,347-348.Wang Nan, Chen Yixian, Bai Leichao, et al. Investigation on soil erosion in small watersheds under "7. 26" Extreme rainstorm in Zizhou County, Northern Shaanxi Province[J]. Bulletin of Soil and Water Conservation, 2017, 37(4): 338-344, 347-348. (in Chinese with English abstract)
    [16] 中国气象局.降水量等级:GB/T 28592-2012 [S]. 北京:中国标准出版社,2012.
    [17] Arabameri A, Pradhan B, Pourghasemi H R, et al. Spatial modelling of gully erosion using GIS and R programing: A comparison among three data mining algorithms[J]. Applied Sciences, 2018, 8(8):1369.
    [18] Nampak H, Pradhan B, Mojaddadi H, et al. Assessment of land cover and land use change impact on soil loss in a tropical catchment by using multitemporal SPOT‐5 satellite images and Revised Universal Soil Loss Equation model[J]. Land Degradation & Development, 2018, 29(10): 3440-3455.
    [19] 赵春敬,焦菊英,税军锋,等. 西藏中南部侵蚀沟形态无人机航测与传统地面测量的对比分析[J]. 水土保持通报,2019,39(5):120-127.Zhao Chunjing, Jiao Juying, Shui Junfeng, et al. Comparative analysis on morphological characteristics of erosion gullies measured by an unmanned aerial vehicle and traditional ground survey in South Central Tibet[J]. Bulletin of Soil and Water Conservation, 2019, 39(5): 120-127. (in Chinese with English abstract)
    [20] 景可. 黄土高原沟谷侵蚀研究[J]. 地理科学,1986,(4):340-347.
    [21] Torri D, Poesen J. A review of topographic threshold conditions for gully head development in different environments[J]. Earth-Science Reviews, 2014, 130: 73-85.
    [22] 李斌兵,郑粉莉,张鹏. 黄土高原丘陵沟壑区小流域浅沟和切沟侵蚀区的界定[J]. 水土保持通报,2008,28(5):16-20.Li Binbing, Zheng Fenli, Zhang Peng. Geomorphic threshold determination for ephemeral gully and gully erosion areas in the Loess Hilly Gully Region[J]. Bulletin of Soil and Water Conservation, 2008, 28(5): 16-20. (in Chinese with English abstract)
    [23] 刘欣,王春梅,庞国伟,等. 基于坡度-汇水面积关系的黄土浅沟与切沟沟头形成敏感区模拟[J]. 山地学报,2020,38(5):658-667.Liu Xin, Wang Chunmei, Pang Guowei, et al. Sensitive area simulation of ephemeral and permanent gully based on slope-area relationship in the Loess Region[J]. Mountain Research, 2020, 38(5): 658-667. (in Chinese with English abstract)
    [24] 自然资源部(国土). 土地利用现状分类:GB/T 21010-2017[S]. 北京:中国标准出版社,2017.
    [25] 刘宝元. 黄土高原"7·26"特大暴雨洪水与水土保持效益综合考察报告[M]. 北京:科学出版社,2020.
    [26] Zhang Y, Zhao Y Y, Liu B Y, et al. Rill and gully erosion on unpaved roads under heavy rainfall in agricultural watersheds on China's Loess Plateau[J]. Agriculture, Ecosystems & Environment, 2019, 284:106580.
    [27] Li Z Y, Fang H Y. Impacts of climate change on water erosion: A review[J]. Earth-Science Reviews, 2016, 163: 94-117.
    [28] Chen H, Zhang X P, Abla M, et al. Effects of vegetation and rainfall types on surface runoff and soil erosion on steep slopes on the Loess Plateau, China[J]. Catena, 2018, 170: 141-149.
    [29] Fu S H, Yang Y F, Liu B Y, et al. Peak flow rate response to vegetation and terraces under extreme rainstorms[J]. Agriculture, Ecosystems & Environment, 2020, 288:106714.
    [30] Zhao Y Y, Zhang Y, Yuan M T, et al. Estimation of initiation thresholds and soil loss from gully erosion on unpaved roads on China's Loess Plateau[J]. Earth Surface Processes and Landforms, 2021, 46(9): 1713-1724.
    [31] 李镇,张岩,姚文俊,等. 基于QuickBird影像估算晋西黄土区切沟发育速率[J]. 农业工程学报,2012,28(22):141-148.Li Zhen, Zhang Yan, Yao Wenjun, et al. Estimating gully development rates in Hilly Loess Region of Western Shanxi province based on QuickBird images[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(22): 141-148. (in Chinese with English abstract)
    [32] Yang S T, Guan Y B, Zhao C S, et al. Determining the influence of catchment area on intensity of gully erosion using high-resolution aerial imagery: A 40-year case study from the Loess Plateau, northern China[J]. Geoderma, 2019, 347: 90-102.
    [33] 黄婷婷,杨扬,史扬子,等. 基于WorldView-2影像估算黄土高原六道沟小流域退耕还林(草)后的切沟发育速率[J]. 中国水土保持科学,2021,19(1):1-10.Huang Tingting, Yang Yang, Shi Yangzi, et al. Using WorldView-2 images to estimate gully development of the Liudaogou catchment in the Loess Plateau after the Grain for Green project[J]. Science of Soil and Water Conservation, 2021, 19(1): 1-10. (in Chinese with English abstract)
    [34] Tang H W, Wang H, Liang D F, et al. Incipient motion of sediment in the presence of emergent rigid vegetation[J]. Journal of Hydro-environment Research, 2013, 7(3): 202-208.
    [35] 肖培青,姚文艺,王国庆,等. 植被作用下土壤抗剪强度和径流侵蚀力的耦合效应[J]. 水科学进展,2016,27(2):224-230.Xiao Peiqing, Yao Wenyi, Wang Guoqing, et al. Effects of soil shear strength and runoff erosivity on slopes with different vegetation cover[J]. Advances in Water Science, 2016, 27(2): 224-230. (in Chinese with English abstract)
  • 期刊类型引用(8)

    1. 鄂高阳,韩芳,秦秉希,刘之广. 遥感技术在农业资源与土壤环境综合监测上的应用. 山东农业科学. 2024(03): 163-170 . 百度学术
    2. 申华珍,王春梅,庞国伟,龙永清,王雷,王强,杨勤科. 黄土切沟沟头位置地形临界模型及不同土地利用下的参数差异. 山地学报. 2024(02): 174-184 . 百度学术
    3. 李全峰,李吉程,于明鹏,张鹏. 东北典型黑土区耕地侵蚀沟形态系统分类方法构建. 农业工程学报. 2024(14): 53-61 . 本站查看
    4. 周杨篪,徐勤学,敖利满,黄光灵. 无人机在土壤侵蚀研究中的应用进展. 热带地理. 2024(09): 1719-1736 . 百度学术
    5. 唐杰,谢云,刘川,张岩. 无人机监测东北黑土区切沟形态的最优参数配置. 水土保持学报. 2024(05): 49-58 . 百度学术
    6. 刘兆题,王春梅,李芹芳,申华珍,张春妹,王强,龙永清,杨勤科. 松嫩黑土区农田道路切沟空间分布特征及其影响因素. 水利水电技术(中英文). 2024(10): 197-210 . 百度学术
    7. 王强 ,王春梅 ,庞国伟 ,龙永清 ,王雷 ,申华珍 ,杨丽娟 ,杨勤科 . 黄土高原丘陵沟壑区浅沟对切沟发生和发育的影响. 农业工程学报. 2023(21): 79-87 . 本站查看
    8. 李建军,陈玉兰,焦菊英,陈同德,陈一先,赵文婷,赵春敬,尚天赦,简金世,曹雪. 基于多元非线性空间建模的拉萨河流域沟蚀发生风险探测. 农业工程学报. 2022(17): 73-82 . 本站查看

    其他类型引用(2)

计量
  • 文章访问数:  311
  • HTML全文浏览量:  0
  • PDF下载量:  2910
  • 被引次数: 10
出版历程
  • 收稿日期:  2021-12-17
  • 修回日期:  2022-02-01
  • 发布日期:  2022-03-30

目录

    /

    返回文章
    返回