[1] |
Li C, Dong N, Zhao Y M, et al. A review for the breeding of orchids: Current achievements and prospects[J]. Horticultural Plant Journal, 2021, 7(5): 380-392.
|
[2] |
Gallo F R, Souza L A, Milaneze-Gutierre M A, et al. Seed structure and in vitro seedling development of certain Laeliinae species (Orchidaceae)[J]. Revista Mexicana de Biodiversidad, 2016, 87(1): 68-73.
|
[3] |
Chang Y W, Hsiao Y K, Ko C C, et al. A Grading System of Pot-Phalaenopsis Orchid Using YOLO-V3 Deep Learning Model[C]//International Conference on Network-Based Information Systems. Springer, Cham, 2020: 498-507.
|
[4] |
任桂萍,王小菁,朱根发. 不同光质的LED对蝴蝶兰组织培养增殖及生根的影响[J]. 植物学报,2016,51(1):81-88.Ren Guiping, Wang Xiaojing, Zhu Genfa. Effect of LED in different light qualities on growth of Phalaenopsis plantlets[J]. Chinese Bulletin of Botany, 2016, 51(1): 81-88. (in Chinese with English abstract)
|
[5] |
张彦妮,边红琳,陈立新. 蝴蝶兰幼嫩花梗组织培养和快速繁殖[J]. 草业科学,2011,28(4):590-596.Zhang Yanni, Bian Honglin, Chen Lixin. Tissue culture and rapid propagation of pedicels of early flowering Phalaenopsis amabilis[J]. Pratacultural Science, 2011, 28(4): 590-596 (in Chinese with English abstract)
|
[6] |
Li X, Ding Q, Sun J Q. Remaining useful life estimation in prognostics using deep convolution neural networks[J]. Reliability Engineering & System Safety, 2018, 172: 1-11.
|
[7] |
郭瑞,于翀宇,贺红,等. 采用改进YOLOv4算法的大豆单株豆荚数检测方法[J]. 农业工程学报,2021,37(18):179-187.Guo Rui, Yu Chongyu, He Hong, et al. Detection method of soybean pod number per plant using improved YOLOv4 algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(18): 179-187. (in Chinese with English abstract)
|
[8] |
贾伟宽,孟虎,马晓慧,等. 基于优化Transformer网络的绿色目标果实高效检测模型[J]. 农业工程学报,2021,37(14):163-170.Jia Weikuan, Meng Hu, Ma Xiaohui, et al. Efficient detection model of green target fruit based on optimized Transformer network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(14): 163-170. (in Chinese with English abstract)
|
[9] |
Zahid A, Mahmud M S, He Long, et al. Technological advancements towards developing a robotic pruner for apple trees: A review[J]. Computers and Electronics in Agriculture, 2021, 189: 106383.
|
[10] |
Quan L Z, Feng H Q, Lv Y J, et al. Maize seedling detection under different growth stages and complex field environments based on an improved faster R-CNN[J]. Biosystems Engineering, 2019, 184: 1-23.
|
[11] |
Wu D H, Lv S C, Jiang M, et al. Using channel pruning-based YOLO v4 deep learning algorithm for the real-time and accurate detection of apple flowers in natural environments[J]. Computers and Electronics in Agriculture, 2020, 178: 105742.
|
[12] |
杨柯,胡志超,于昭洋,等. 基于深度学习目标测定的大蒜收获切根装置设计与试验[J]. 农业机械学报,2022,53(1):123-132.Yang Ke, Hu Zhichao, Yu Zhaoyang, et al. Design and experiment of garlic harvesting and cutting root device based on deep learning target determination[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(1): 123-132 (in Chinese with English abstract)
|
[13] |
郑太雄,江明哲,冯明驰. 基于视觉的采摘机器人目标识别与定位方法研究综述[J]. 仪器仪表学报,2021,42(9):28-51.Zheng Taixiong, Jiang Mingzhe, Feng Mingchi. Vision based target recognition and location for picking robot: A review[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 42(9): 28-51. (in Chinese with English abstract)
|
[14] |
李涛,邱权,赵春江,等. 矮化密植果园多臂采摘机器人任务规划[J]. 农业工程学报,2021,37(2):1-10.Li Tao, Qiu Quan, Zhao Chunjiang, et al. Task planning of multi-arm harvesting robots for high-density dwarf orchards[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(2): 1-10. (in Chinese with English abstract)
|
[15] |
陈飞,葛云,张立新,等. 红花采摘机器人集条预定位机构设计与试验[J]. 农业工程学报,2021,37(15):10-19.Chen Fei, Ge Yun, Zhang Lixin, et al. Design and experiment of the strip-collected pre-positioning mechanism for safflower picking robots[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(15): 10-19. (in Chinese with English abstract)
|
[16] |
李国进,黄晓洁,李修华,等. 采用轻量级网络MobileNetV2的酿酒葡萄检测模型[J]. 农业工程学报,2021,37(17):168-176.Li Guojin, Huang Xiaojie, Li Xiuhua, et al. Detection model for wine grapes using MobileNetV2 lightweight network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(17): 168-176. (in Chinese with English abstract)
|
[17] |
宁政通,罗陆锋,廖嘉欣,等. 基于深度学习的葡萄果梗识别与最优采摘定位[J]. 农业工程学报,2021,37(9):222-229.Ning Zhengtong, Luo Lufeng, Liao Jiaxin, et al. Recognition and the optimal picking point location of grape stems based on deep learning[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(9): 222-229. (in Chinese with English abstract)
|
[18] |
赵德安,吴任迪,刘晓洋,等. 基于YOLO深度卷积神经网络的复杂背景下机器人采摘苹果定位[J]. 农业工程学报,2019,35(3):164-173.Zhao Dean, Wu Rendi, Liu Xiaoyang, et al. Apple positioning based on YOLO deep convolutional neural network for picking robot in complex background[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(3): 164-173. (in Chinese with English abstract)
|
[19] |
Ren S, He K, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems, 2015, 28: 91-99.
|
[20] |
Cai Z, Vasconcelos N. Cascade R-CNN: Delving into high quality object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 6154-6162.
|
[21] |
Dai J, Li Y, He K, et al. R-FCN: Object detection via region-based fully convolutional networks[C]//Advances in Neural Information Processing Systems, 2016: 379-387.
|
[22] |
Zhu Y, Zhao C, Wang J, et al. CoupleNet: Coupling global structure with local parts for object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 4126-4134.
|
[23] |
Ma N, Zhang X, Zheng H T, et al. Shufflenet v2: Practical guidelines for efficient cnn architecture design[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 116-131.
|
[24] |
Peter J. Rousseeuw, Sabine V. Robust estimation in very small samples[J]. Computational Statistics and Data Analysis, 2002, 40(4): 741-758.
|
[25] |
崔海华,漏华铖,田威,等. 轨道式爬行机器人制孔基准的视觉高精度定位[J]. 光学学报,2021,41(9):179-188.Cui Haihua, Lou Huacheng, Tian Wei, et al. High-precision visual positioning of hole-making datum for orbital crawling robot[J]. Acta Optica Sinica, 2021, 41(9): 179-188. (in Chinese with English abstract)
|
[26] |
郭丽,索素敏,徐明辉. 组织培养中不同消毒处理对野生薄皮木种子萌发的影响[J]. 分子植物育种:2022,20(4):1325-1330.Guo Li, Suo Sumin, Xu Minghui. Effects of different disinfection treatments on seed germination of wild leptodermis oblonga bge. in tissue culture[J]. Molecular Plant Breeding, 2022, 20(4): 1325-1330. (in Chinese with English abstract)
|
[27] |
黄歆怡,谢振兴,陆祖正,等. 罗氏蝴蝶兰的无菌播种与快速繁殖[J]. 植物生理学报,2020,56(4):693-699.Huang Xinyi, Xie Zhenxing, Lu Zuzheng, et al. Aseptic seeding and rapid propagation of Phalaenopsis lobbi[J]. Plant Physiology Journal, 2020, 56(4): 693-699. (in Chinese with English abstract)
|
[28] |
Bochkovskiy A, Wang C Y, Liao H Y M. Yolov4: Optimal speed and accuracy of object detection[J]. arXiv preprint arXiv: 2004. 10934, 2020.
|
[29] |
湖北省质量技术监督局. 蝴蝶兰组培苗工厂化生产技术规程:DB42/T 1448-2018[S]. 武汉:湖北省农业科学院,2018.
|