[1] |
Wang Y Q, Zhang X C, Zhang J L, et al. Spatial variability of soil organic carbon in a watershed on the Loess Plateau[J]. Pedosphere, 2009, 19(4): 486-495
|
[2] |
Tziachris P, Aschonitis V, Chatzistathis T, et al. Assessment of spatial hybrid methods for predicting soil organic matter using DEM derivatives and soil parameters[J]. Catena, 2019, 174: 206-216.
|
[3] |
Zhang C T, Yang Y. Can the spatial prediction of soil organic matter be improved by incorporating multiple regression confidence intervals as soft data into BME method?[J]. Catena, 2019, 178: 322-334.
|
[4] |
Dou X, Wang X, Liu H, et al. Prediction of soil organic matter using multi-temporal satellite images in the Songnen Plain, China[J]. Geoderma, 2019, 356: 113896.
|
[5] |
Long J, Liu Y, Xing S, et al. Optimal interpolation methods for farmland soil organic matter in various landforms of a complex topography[J]. Ecological Indicators, 2020, 110: 105926.
|
[6] |
Meng X, Bao Y, Ye Q, et al. Soil organic matter prediction model with satellite hyperspectral image based on optimized denoising method[J]. Remote Sensing, 2021, 13(12): 2273.
|
[7] |
Nikou M, Tziachris P. Prediction and uncertainty capabilities of quantile regression forests in estimating spatial distribution of soil organic matter[J]. ISPRS International Journal of Geo-Information, 2022, 11: 130.
|
[8] |
马重阳,孙越琦,巫振富,等. 基于不同模型的区域尺度耕地表层土壤有机质空间分布预测[J]. 土壤通报,2021,52(6):1261-1272.Ma Chongyang, Sun Yueqi, Wu Zhenfu, et al. Spatial prediction of topsoil organic matter of arable land by different models at the regional scale[J]. Chinese Journal of Soil Science, 2021, 52(6): 1261-1272. (in Chinese with English abstract)
|
[9] |
尉芳,刘京,夏利恒,等. 陕西渭北旱塬区农田土壤有机质空间预测方法[J]. 环境科学,2022,43(2):1097-1107.Wei Fang, Liu Jing, Xia Liheng, et al. Spatial prediction method of farmland soil organic matter in Weibei dryland of Shaanxi province[J]. Environmental Science, 2022, 43(2): 1097-1107. (in Chinese with English abstract)
|
[10] |
Qqla B, Txy B, Cqw A, et al. Spatially distributed modeling of soil organic matter across China: An application of artificial neural network approach[J]. Catena, 2013, 104: 210-218.
|
[11] |
Liu Y, Guo L, Jiang Q, et al. Comparing geospatial techniques to predict SOC stocks[J]. Soil and Tillage Research, 2015, 148: 46-58.
|
[12] |
Hengl T, Heuvelink G, Stein A. A generic framework for spatial prediction of soil variables based on regression-kriging[J]. Geoderma, 2004, 120: 75-93.
|
[13] |
Jafari A, Khademi H, Finke P A, et al. Spatial prediction of soil great groups by boosted regression trees using a limited point dataset in an arid region, southeastern Iran[J]. Geoderma, 2014, 232: 148-163.
|
[14] |
Kumar A, Lal R, Liu D. A geographically weighted regression kriging approach for mapping soil organic carbon stock[J]. Geoderma, 2012, 189: 627-634.
|
[15] |
Zhu Q, Lin H S. Comparing ordinary kriging and regression kriging for soil properties in contrasting landscapes[J]. Pedosphere, 2010, 5: 594-606.
|
[16] |
Jin L, Heap A D. A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors[J]. Ecological Informatics, 2011, 6(3/4): 228-241.
|
[17] |
Jin L, Heap A D. Spatial interpolation methods applied in the environmental sciences: A review[J]. Environmental Modelling & Software, 2014, 53: 173-189.
|
[18] |
Stein A, Varekamp C, Egmond C V. Zinc Concentrations in groundwater at different scales[J]. Journal of Environmental Quality, 1995, 24(6): 1205-1214.
|
[19] |
Stein A, Hoogerwerf M, Bouma J. Use of soil-map delineations to improve (Co-)kriging of point data on moisture deficits[J]. Geoderma, 1988, 43(2/3): 163-177.
|
[20] |
Liao Y, Li D, Zhang N, et al. Application of sandwich spatial estimation method in cancer mapping: A case study for breast cancer mortality in the Chinese mainland, 2005[J]. Statistical Methods in Medical Research, 2019, 28(12): 3609-3626.
|
[21] |
Gao B, Hu M, Wang J, et al. Spatial interpolation of marine environment data using P-MSN[J]. International Journal of Geographical Information Science, 2020, 34(3): 577-603.
|
[22] |
Zhou Y, Chen S, Zhu A X, et al. Revealing the scale- and location-specific controlling factors of soil organic carbon in Tibet[J]. Geoderma, 2021, 382: 114713.
|
[23] |
Breiman L. Statistical modeling: The two cultures[J]. Statistical Science, 2001, 16: 199-215.
|
[24] |
Tan Z, Yang Q, Zheng Y. Machine learning models of groundwater arsenic spatial distribution in Bangladesh: Influence of Holocene sediment depositional history[J]. Environmental Science & Technology, 2020, 54: 9454-9463.
|
[25] |
Zhu A X, Liu J, Du F, et al. Predictive soil mapping with limited sample data[J]. European Journal of Soil Science, 2015, 66: 535-547.
|
[26] |
Darmofal D. Spatial Analysis for the Social Sciences(Analytical Methods for Social Research)[M]. Cambridge: Cambridge University Press, 2015: 158-199.
|
[27] |
Xiao M Y, Zhang G H, Breitkopf P, et al. Extended Co-Kriging interpolation method based on multi-fidelity data[J]. Applied Mathematics and Computation, 2018, 323: 120-131.
|
[28] |
Georganos S, Grippa T, Niang G A, et al. Geographical random forests: a spatial extension of the random forest algorithm to address spatial heterogeneity in remote sensing and population modelling[J]. Geocarto International, 2021, 36(2): 121-136.
|
[29] |
Hengl T, Heuvelink G B M, Rossiter D G. About regression-kriging: From equations to case studies[J]. Computers & Geosciences, 2007, 33: 1301-1315.
|
[30] |
Sekuli? A, Kilibarda M, Heuvelink G B M, et al. Random Forest Spatial Interpolation[J]. Remote Sensing, 2020, 12: 1687.
|
[31] |
Xu J, Zhang F, Ruan H, et al. Hybrid modelling of random forests and kriging with sentinel-2A multispectral imagery to determine urban brightness temperatures with high resolution[J]. International Journal of Remote Sensing, 2021, 42: 2174-2202.
|
[32] |
江厚龙,刘国顺,杨夏孟,等. 精准农业中不同取样间距下Kriging插值精度对比研究[J]. 土壤通报,2011,42(4):879-886.Jiang Houlong, Liu Guoshun, Yang Xiameng, et al. Comparison of kriging interpolation precision in different soil sampling interval in precision agriculture[J]. Chinese Journal of Soil Science, 2011, 42(4): 879-886. (in Chinese with English abstract)
|
[33] |
Zhang S, Huang Y, Shen C, et al. Spatial prediction of soil organic matter using terrain indices and categorical variables as auxiliary information[J]. Geoderma, 2012, 171/172: 35-43.
|
[34] |
陈琳,任春颖,王宗明,等. 基于克里金插值的耕地表层土壤有机质空间预测[J]. 干旱区研究,2017,34(4):798-805.Chen Lin, Ren Chunying, Wang Zongming, et al. Prediction of spatial distribution of topsoil organic matter content in cultivated land using kriging methods[J]. Arid Zone Research, 2017, 34(4): 798-805. (in Chinese with English abstract)
|
[35] |
Guo P T, Li M F, Luo W, et al. Digital mapping of soil organic matter for rubber plantation at regional scale: An application of random forest plus residuals kriging approach[J]. Geoderma, 2015, 237: 49-59.
|
[36] |
Lorenzo G, Marta C, Luca F, et al. Mapping soil organic carbon in Tuscany through the statistical combination of ground observations with ancillary and remote sensing data[J]. Geoderma, 2021, 404: 115386.
|
[37] |
Gao B B, Stein A, Wang J, et al. A two point machine learning method for spatial prediction of soil pollution[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 108: 102742.
|
[38] |
刘焕军,张美薇,杨昊轩,等. 多光谱遥感结合随机森林算法反演耕作土壤有机质含量[J]. 农业工程学报,2020,36(10):134-140.Liu Huanjun, Zhang Meiwei, Yang Haoxuan, et al. Invertion of cultivated soil organic matter content combining multi-spectral remote sensing and random forest algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(10): 134-140. (in Chinese with English abstract)
|
[39] |
李德,陈文涛,乐章燕,等. 基于随机森林算法和气象因子的砀山酥梨始花期预报[J]. 农业工程学报,2020,36(12):143-151.Li De, Chen Wentao, Le Zhangyan, et al. Forecast method for the first flowering date of Dangshansu pear based on random forest algorithm and meteorological factors[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(12): 143-151. (in Chinese with English abstract)
|
[40] |
刘峻明,和晓彤,王鹏新,等. 长时间序列气象数据结合随机森林法早期预测冬小麦产量[J]. 农业工程学报,2019,35(6):158-166.Liu Junming, He Xiaotong, Wang Pengxin, et al. Early prediction of winter wheat yield with long time series meteorological data and random forest method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(6): 158-166. (in Chinese with English abstract)
|
[41] |
Wang J F, Li X H, Christakos G, et al. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China[J]. International Journal of Geographical Information Science, 2010, 24(1): 107-127.
|
[42] |
赵军,张久明,孟凯,等. 地统计学GIS在黑土区域土壤养分空间异质性分析中的应用-以海伦市为例[J]. 水土保持通报,2004,24(6):53-57.Zhao Jun, Zhang Jiupeng, Meng Kai, et al. Spatial heterogeneity of soil nutrients in blacksoil, China-A Case Study at Hailun County[J]. Bulletin of Soil and Water Conservation, 2004, 24(6): 53-57. (in Chinese with English abstract)
|
[43] |
李欣宇,宇万太,李秀珍. 遥感与地统计方法在表层土壤有机碳空间格局研究中的应用比较[J]. 农业工程学报,2009,25(3):148-152.Li Xinyu, Yu Wantai, Li Xiuzhen. Comparison and application of remote sensing and geostatistics methods to spatial distribution of surface soil organic carbon[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(3): 148-152. (in Chinese with English abstract)
|
[44] |
黑龙江省海伦县土壤普查办公室. 海伦县土壤志[M]. 海伦:黑龙江省海伦县土壤普查办公室,1985.
|
[45] |
王建华,陶培峰,袁月,等. PSR框架下的黑龙江省海伦市耕地质量评价[J]. 地质与资源,2020,29(6):525-532.Wang Jianhua, Tao Peifeng, Yuan Yue, et al. PSR-Based evaluation of the cultivated land quality in Hailun city of Heilongjiang province[J]. Geology and resources, 2020, 29(6): 525-532. (in Chinese with English abstract)
|
[46] |
Wager S, Hastie T, Efron B. Confidence Intervals forRandom Forests: The Jackknife and the Infinitesimal Jackknife[J]. Journal of Machine Learning Research: JMLR, 2014, 15: 1625-1651.
|
[47] |
刘艳芳,宋玉玲,郭龙,等. 结合高光谱信息的土壤有机碳密度地统计模型[J]. 农业工程学报,2017,33(2):183-191.Liu Yanfang, Song Yuling, Guo Long, et al. Geostatistical models of soil organic carbon density prediction based on soil hyperspectral reflectance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(2): 183-191. (in Chinese with English abstract)
|
[48] |
徐占军,张媛,张绍良,等. 基于GIS与分区Kriging的采煤沉陷区土壤有机碳含量空间预测[J]. 农业工程学报,2018,34(10):253-259.Xu Zhanjun, Zhang Yuan, Zhang Shaoliang, et al. Spatial prediction of soil organic carbon content in coal mining subsidence area based on GIS and partition Kriging[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(10): 253-259. (in Chinese with English abstract)
|