高级检索+

改进YOLOX检测单位面积麦穗

Detecting wheat ears per unit area using an improved YOLOX

  • 摘要: 单位面积麦穗数是估算小麦产量的重要指标,对于作物表型参数计算、产量预测和大田管理都具有重要的意义。目前的研究均未以单位面积麦穗图像为研究对象,为准确获取单位面积麦穗数,该研究提出了基于改进YOLOX的单位面积麦穗检测方法,利用采样框直接实现单位面积麦穗计数。首先,设计了一种简单的单位面积采样框,通过训练角点检测网络识别采样框,以提取单位面积小麦区域;其次,针对麦穗检测中存在的目标密集和相互遮挡问题,在麦穗检测网络的特征融合层,采用上下文信息进行特征重组的上采样方法(Content-Aware ReAssembly of Features,CARAFE)代替YOLOX-m模型中的上采样算法,同时结合迭代注意力特征融合模块(iterative Attentional Feature Fusion,iAFF),增加对麦穗空间信息和语义信息的提取。试验结果表明,改进的YOLOX-m模型明显改善了对密集麦穗和遮挡麦穗的检测效果,其精确率、召回率、平均精确度和F1值分别为96.83%、91.29%、92.29%和93.97%,与SSD、CenterNet和原YOLOX-m模型相比,平均精确度分别提升了10.26、8.2和1.14个百分点。该研究方法能够直接对复杂大田场景下的单位面积麦穗进行准确检测和计数,为实际生产小麦产量预测中的麦穗智能化计数提供了一种方法参考。

     

    Abstract: Wheat production is closely related to the food security in world. The yield forecast of wheat can provide a strong reference for the agricultural production and management, particularly for the decision-making on the rural land policy and grain market. Among them, the number of wheat ears per unit area is one of the most important indicators to estimate the wheat yield, including the crop phenotypic parameters, yield prediction, and field management. However, the traditional image processing and manual counting of wheat ears cannot fully meet the large-scale production in recent years. Particularly, the manual counting is cumbersome, labor-intensive, and highly subjective. It is a high demand to improve the detection accuracy of the traditional image processing. A generalized model is also required for a lot of experience, the robustness to lighting, and sufficient soil conditions in complex scenes. Much effort has been made to combine the deep learning for the detection and counting of the wheat ears per unit area, particularly with the rapid development of crop phenotype research. It is still lacking on the recognition accuracy of dense and occluded wheat ears under complex conditions. Taking the image of wheat ears per unit area as the research object, this study aims to accurately obtain the number of wheat ears per unit area using the improved YOLOX. Firstly, a simple sampling frame was designed to directly realize the counting of wheat ears per unit area. The corner detection network was trained to identify the sampling frame, further to extract the unit area of wheat. The Content-Aware ReAssembly of Features (CARAFE) map was used in the feature fusion layer of the wheat ear detection network. Secondly, the sampling was replaced with the up-sampling in the YOLOX-m model. The iterative attention feature fusion module was also used to increase the extraction of spatial information and semantic information of wheat ears. Thirdly, the wheat canopy images captured by the smartphone were taken as the research object. The images were selected at the wheat grain filling and mature stages under three weather conditions of clear, overcast, and cloudy. A total of 600 images of wheat ears without the sampling frame (image resolution of 4 000 × 3 000 pixels) were collected, where the original images were randomly cropped into the 3 072 images of wheat ears of 800 × 800 pixels. Fourthly, the dataset was augmented after the mirroring and rotation operation, where the image data of the training set was expanded from 3 072 to 9 216 images. There were 218 wheat ears images with the sampling frame (image resolution was 4 000 × 3 000 pixels). Among them, the sampling frame was contained 350-520 target wheat ears. Finally, the performance of the model was evaluated using the precision, recall, Average Precision (AP), F1 score, Frame per Second (FPS), determination coefficient (R2) and Root Mean Square Error (RMSE). The experimental results show that the improved YOLOX-m model was significantly improved the detection performance of dense and occluded wheat ears. Specifically, the AP value was improved by 10.26, 8.2 and 1.14 percentage points, respectively, compared with the SSD, CenterNet, and original YOLOX-m model. Consequently, the wheat ears per unit area were accurately detected and counted in the natural environment. The finding can provide a strong reference for the intelligent counting of wheat ears in the actual production of wheat yield prediction.

     

/

返回文章
返回