高级检索+

基于APSIM模型的低纬高原蔗区甘蔗生产潜力

张跃彬, 毛钧, 李如丹, 刀静梅, 余凌翔, 王靖

张跃彬, 毛钧, 李如丹, 刀静梅, 余凌翔, 王靖. 基于APSIM模型的低纬高原蔗区甘蔗生产潜力[J]. 农业工程学报, 2023, 39(3): 123-133. DOI: 10.11975/j.issn.1002-6819.202210149
引用本文: 张跃彬, 毛钧, 李如丹, 刀静梅, 余凌翔, 王靖. 基于APSIM模型的低纬高原蔗区甘蔗生产潜力[J]. 农业工程学报, 2023, 39(3): 123-133. DOI: 10.11975/j.issn.1002-6819.202210149
ZHANG Yuebin, MAO Jun, LI Rudan, DAO Jingmei, YU Lingxiang, WANG Jing. Simulating sugarcane yield potential and yield gap in the low latitude plateau of China based on APSIM[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(3): 123-133. DOI: 10.11975/j.issn.1002-6819.202210149
Citation: ZHANG Yuebin, MAO Jun, LI Rudan, DAO Jingmei, YU Lingxiang, WANG Jing. Simulating sugarcane yield potential and yield gap in the low latitude plateau of China based on APSIM[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(3): 123-133. DOI: 10.11975/j.issn.1002-6819.202210149

基于APSIM模型的低纬高原蔗区甘蔗生产潜力

基金项目: 国家自然科学基金项目(31860341),云南省科技人才与平台计划(202205AM070001)资助

Simulating sugarcane yield potential and yield gap in the low latitude plateau of China based on APSIM

  • 摘要: 针对中国(云南)低纬高原蔗区甘蔗产业高质量发展受限于不同生态条件下的甘蔗生产潜力缺乏系统评估的问题,该研究基于低纬高原不同生态蔗区17个代表站点1981-2010年的气象资料,采用大田试验数据统计结合APSIM作物模型模拟的方法,分析了典型播期充分灌溉和雨养条件下甘蔗主栽品种的蔗茎产量和糖分差异,并对不同水平的甘蔗生产潜力进行了系统评估。结果表明,无论在灌溉模式还是雨养模式下,不同生态蔗区的甘蔗生产潜力和产量差均存在差异,特别是半湿润蔗区的灌溉模式与雨养模式之间产量差异显著(P<0.05),增产潜力大;典型春播种植模式下,湿润区的潜在产量为123.1~134.6 t/hm2,半湿润区的潜在产量为99.3~132.7 t/hm2,当前农户平均单产已达72 t/hm2,仍有25.2%~45.4%的蔗茎增产潜力,7.4%~11.1%的糖分增产潜力,以及25.5%~49.7%的蔗糖增产潜力。蔗区生态气候、播期水氮管理优化和良种推广是影响和提升甘蔗生产潜力的重要因素。在生态气候上,湿润蔗区降雨充足,灌溉模式与雨养模式之间的潜在产量差小,进行补充灌溉对蔗茎产量的增产效果不明显,还会降低蔗茎糖分,适合采用雨养模式为主,注重高产稳产的种植策略;半湿润蔗区降雨不足,灌溉模式与雨养模式之间的潜在产量差大,灌溉模式较雨养模式增产增糖效果明显,适合采用节水灌溉为主,注重高糖高效的种植策略。在播期和水氮优化上,春植蔗生育期长度适中(360 d),水氮需求适中(施氮120 kg/hm2,湿润区灌水656 mm,半湿润区灌水970 mm),远低于秋植蔗的生育期时间(480 d)和水氮需求(施氮240 kg/hm2,湿润区灌水964 mm,半湿润区灌水1 342 mm),但仍可获得较高的产量(120~133 t/hm2),因此,以春植蔗为主的播期和水氮优化种植模式在低纬高原蔗区被广泛接受,是促进甘蔗产业提质增效的有效措施。在良种推广上,云蔗05-51产量表现突出,在湿润蔗区和半湿润蔗区均可作为主推品种;桂柳05-136糖分表现突出,可作为湿润蔗区的主推品种。研究结果为低纬高原蔗区甘蔗产业可持续发展特别是节水抗旱栽培提供依据。
    Abstract: Sugarcane is one of the major sugar crops in the dominant sugarcane areas of Yunnan Province of China, located in the traditional low latitude plateau with the most abundant ecological regions for sugarcane growing. In this study, the cane yield potential and yield gap matters were analyzed to greatly promote cane production on large scale. The meteorological data was collected from 1981 to 2010 across 17 locations under varying ecotypes, and then combined with data obtained from the field experiments and APSIM (Agricultural Production Systems sIMulator) modeling. The simulation was performed on the cane yield and sugar content of dominant sugarcane cultivars under full irrigation and nature rain-fed conditions in different ecotypes regions. The results indicated that there were significant differences in the low-latitude plateau, while the large interannual varied greatly from the different levels of the cane yield potential and yield gaps. Furthermore, the yield potential was 123.1-134.6 t/hm2 under the typical spring planting conditions, if as humid region, or 99.3-132.7 t/hm2 if as a semi-humid region. Although the actual cane yield reached 72 t/hm2, there were still 25.2% to 45.4% cane yield potential, 7.4% to 11.1% sugar content yield potential, and 25.5% to 49.7% sucrose yield potential were expected in the low latitude plateau. Three key elements were selected to enhance the yield potential of sugarcane, including the suitable ecological climate, the optimization of sowing date, water, and nitrogen management, as well as the promotion and planting of excellent sugarcane varieties. The humid region presented sufficient precipitation, indicating the small gap of cane yield potential between irrigation and rainfed condition in terms of ecological climate. By contrast, there was no significant between the irrigation and rainfed cane yield, leading to a decrease in the sugar content. Therefore, the natural rainfed was suitable as the main sugarcane planting strategy in a humid region, particularly on the higher and stabler cane yield. There was a significant yield increase by irrigation in the semi-humid region with insufficient precipitation, due to the larger irrigation-rainfed yield gap. It was more suitable for water-saving irrigation as the main sugarcane planting strategy, focusing on the higher sugar content and water-nitrogen use efficiency. In terms of sowing season and water-nitrogen management optimization, the spring cane presented moderate growing days (360 d), moderate water-nitrogen demand (N-fertilization 120 kg/hm2, irrigation 656 mm in humid regions, and 970 mm in semi-humid region), which was far lower than that of the autumn cane demand (growing 480 d, N-fertilization 240 kg/hm2, irrigation 964 mm in the humid region and 1 342 mm in the semi-humid region), meanwhile the spring cane still remained the relatively high cane yield (122-133 t/hm2). The spring cane dominated the planting mode and combined with the optimization of the sowing-date. The water-nitrogen management was widely accepted as effective cultivation to improve the sugarcane yield and water-nitrogen use efficiency in the low latitude plateau. In the promotion of excellent cultivars, the YZ0551 was recommended as the main cultivar in both humid and semi-humid regions for outstanding cane yield performance. GL05136 was also recommended as the main cultivar in the humid region for its outstanding sugar content performance. The finding can provide a basis for the sustainable development of the sugarcane industry in the low-latitude plateau cane area, especially water-saving and drought-resistant cultivation.
  • [1] 张跃彬. 现代甘蔗糖业[M]. 北京:科学出版社,2013.
    [2] 张跃彬,樊仙,毛钧,等. 中国主产蔗区气候生态空间分布特征研究[J]. 西南农业学报,2021,34(10):2281-2288.ZHANG Yuebin, FAN Xian, MAO Jun, et al. Ecological region division for China's main sugarcane producing area through meteorological and ecological characters[J]. Southwest China Journal of Agricultural Sciences. 2021, 34(10): 2281-2288. (in Chinese with English Abstract)
    [3] 张跃彬,邓军,胡朝晖. "十三五"我国蔗糖产业现状及"十四五"发展趋势[J].中国糖料,2022,44(1):71-76.ZHANG Yuebin, DENG Jun, HU Zhaohui. The 13th five-year plan of cane sugar industry in china and development trend of the 14th five-year plan[J]. Sugar Crops of China, 2022, 44(1): 71-76. (in Chinese with English Abstract)
    [4] 张跃彬. 低纬高原甘蔗产高糖高效理论与实践[M]. 北京:中国农业出版社,2016.
    [5] 孙扬越,申双和. 作物生长模型的应用研究进展[J]. 中国农业气象,2019,40(7):444-459.SUN Yangyue, SHEN Shuanghe. Research progress in application of crop growth mode[J]. Chinese Journal of Agrometeorology, 2019, 40(7): 444-459. (in Chinese with English Abstract)
    [6] KEATING B A, ROBERTSON M J, MUCHOW R C, et al. Modelling sugarcane production systems I. Development and performance of the sugarcane module[J]. Field Crop Research, 1999, 61(3): 253-271.
    [7] O'LEARY G J. A review of three sugarcane simulation models with respect to their prediction of sucrose yield[J]. Field Crops Research, 2000, 68: 97-111.
    [8] LISSON S N, INMAN-BAMBER N G, ROBERTSON M J, et al. The historical and future contribution of crop physiology and modelling research to sugarcane production systems[J]. Field Crop Research, 2005, 92: 321-335.
    [9] THORBURN P J, MEIER E A, PROBERT M E. Modelling nitrogen dynamics in sugarcane systems recent advances and applications[J]. Field Crop Research, 2005, 92: 337-351.
    [10] 杨昆,蔡青,刘家勇,等. 甘蔗生长模型研究进展[J]. 湖南农业大学学报(自然科学版),2015,41(1):29-34.YANG Kun, CAI Qing, LIU Jiayong, et al. Advances in simulation models of sugarcane growth[J]. Journal of Hunan Agricultural University (Natural Sciences), 2015, 41(1): 29-34. (in Chinese with English Abstract)
    [11] 毛钧,INMAN-BAMBER N G,杨昆,等. 甘蔗农业生产系统模拟模型模块化设计与应用研究进展[J]. 中国糖料,2017,39(1):44-50.MAO Jun, INMAN-BAMBER N G, YANG Kun, et al. Modular design and application of agricultural system simulating model for sugarcane (APSIM-Sugar)[J]. Sugar Crops of China. 2017, 39(1):44-50. (in Chinese with English Abstract)
    [12] 毛钧,INMAN-BAMBER N G,陆鑫,等. APSIM-Sugar模型在云南半湿润半干旱蔗区的适应性研究[J]. 西南农业学报,2018,31(12):2506-2513.MAO Jun, INMAN-BAMBER N G, LU Xin, et al. Adaptability of APSIM-Sugar model in semi-humid semiarid climate region of Yunnan province[J]. Southwest China Journal of Agricultural Sciences, 2018, 31(12): 2506-2513. (in Chinese with English Abstract)
    [13] 毛钧,王靖,黄明霞,等. 云南蔗区播期与水氮耦合对甘蔗产量和糖分影响[J]. 农业工程学报,2019,35(16):134-144.MAO Jun, WANG Jing, HUANG Mingxia, et al. Effects of sowing date, water and nitrogen coupling management on cane yield and sugar content in sugarcane region of Yunnan[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(16): 134-144. (in Chinese with English Abstract)
    [14] 玉树斌,姚克敏,梁洪海. 广西甘蔗的气候生产力特征分析[J]. 甘蔗糖业,1987(8):8-15,21.YU Shubing, YAO Kemin, LIANG Honghai. Analysis of climate productivity characteristics of sugarcane in Guangxi[J]. Sugarcane and Canesugar, 1987(8): 8-15, 21. (in Chinese with English Abstract)
    [15] 何春林,陈彪. 雷州半岛旱坡蔗地的自然生产潜力及限制因子分析[J]. 中国糖料,1996(3):17-23.HE Chunlin, CHEN Biao. Analysis on nature productive potential and restrictive factors of drysloping sugarcane fields in Leizhou penisula[J]. Sugar Crops of China, 1996(3): 17-23. (in Chinese with English Abstract).
    [16] 杨洪昌,范源洪,吴才文,等. 德宏州甘蔗高产潜力分析[J]. 甘蔗糖业,2007(1):13-15.YANG Hongchang, FAN Yuanhong, WU Caiwen, et al. Analysis of yield potential of sugarcane in Dehong region, Yunnan[J]. Sugarcane and Canesugar, 2007(1): 13-15. (in Chinese with English Abstract)
    [17] 王雪丽,钱慧慧,陈雨琪,等. 基于GIS的广西甘蔗生产潜力评价[J]. 湖北农业科学,2014,53(19):4614-4619.WANG Xueli, QIAN Huihui, CHEN Yuqi, et al. Evaluation of the potential productivity of sugarcane in Guangxi Zhuang Autonomous Region based on the GIS[J]. Hubei Agricultural Sciences. (in Chinese with English Abstract)
    [18] 阮红燕. 气候变化对广西甘蔗生产潜力影响的模拟研究[D]. 南宁:广西大学,2018.RUAN Hongyan. Climate Change Projects Impacts on Sugarcane Productivity in Guangxi[D]. Nanning: Guangxi university, 2018. (in Chinese with English Abstract)
    [19] 李如丹,毛钧,刀静梅,等. 中国主栽甘蔗品种生物学特性研究[J]. 热带作物学报,2022,43(7):1347-1356.LI Rudan, MAO Jun, DAO Jingmei, et al. Biological characteristics of main sugarcane cultivars in china[J]. Chinese Journal of Tropical Crops, 2022, 43(7): 1347-1356. (in Chinese with English Abstract)
    [20] 高亮之. 农业模型学[M]. 北京:气象出版社,2019:1-19.
    [21] 杨晓光,刘志娟. 作物产量差研究进展[J]. 中国农业科学,2014,47(14):2731-2741.YANG Xiaoguang, LIU Zhijuan. Advances in research on crop yield gaps[J]. Scientia Agricultura Sinica, 2014, 47(14): 2731-2741. (in Chinese with English Abstract)
    [22] 刘志娟,杨晓光,吕硕,等. 东北三省春玉米产量差时空分布特征[J]. 中国农业科学,2017,50(9):1606-1616.LIU Zhijuan, YANG Xiaoguang, LYU Shuo, et al. Spatial-temporal variations of yield gaps of spring maize in Northeast China[J]. Scientia Agricultura Sinica, 2017, 50(9): 1606-1616. (in Chinese with English Abstract)
    [23] 米娜,蔡福,张玉书,等. 雨养作物产量差研究进展[J]. 气象与环境学报,2018,34(6):140-147.MI Na, CAI Fu, ZHANG Yushu, et al. Advanced in research on rainfed crop yield gaps[J]. Journal of Meteorology and Environment,2018, 34(6): 140-147. (in Chinese with English Abstract)
    [24] 范芳钰. 低纬高原甘蔗产业高糖技术创新应用支撑云南蔗糖分、出糖率创新高[Z/OL]. (2022-06-27)[2022-10-14]. http://yn.news.cn/nets/2022-06/27/c_1310634267.htm
    [25] 周一帆,杨林生,孟博,等. 中国甘蔗主产区产量差及影响因素分析[J]. 中国农业科学,2021,54(11):2377-238.ZHOU Yifan, YANG Linsheng, MENG Bo, et al. Analysis of yield gaps and limiting factors in china's main sugarcane production areas[J]. Scientia Agricultura Sinica, 2021, 54(11): 2377-238. (in Chinese with English Abstract)
    [26] 虎遵会,杨良旺. 甘蔗新品种云蔗05-51在耿马引种成功平均亩产达9.17吨[DB/OL]. (2016-11-27)[2022-10-15]. https://www.sohu.com/a/120003466_114731.
    [27] 陈云芬,邓蕊丹. 云南自育甘蔗品种"云蔗08-1609"在富宁创平均亩产高产水平[Z/OL]. (2022-03-10) [2022-10-15]. https://yn.yunnan.cn/system/2022/03/10/031963789.shtml.
    [28] 陈云芬. 云南低纬高原甘蔗科技创新结硕果我省甘蔗蔗糖分和出糖率均居全国第一[Z/OL]. (2022-06-28) [2022-10-15]. https://www.sohu.com/a/561638738_115092
    [29] 刘少春,张跃彬,郭家文,等. 地膜覆盖下节水灌溉对旱地甘蔗产量和糖分的影响研究[J]. 节水灌溉,2014(6):16-18.LIU Shaochun, ZHANG Yuebin, GUO Jiawen, et al. Effects of mulched drip irrigation on yield and sugar content of drought sugarcane[J]. Water Saving Irrigation, 2014(6): 16-18. (in Chinese with English Abstract)
    [30] 郭家文,陈建国,张跃彬,等. 后期灌水对蔗田土壤水分及甘蔗产量、品质性状的影响[J]. 干旱地区农业研究,2013,31(6):57-66.GUO Jiawen, CHEN Jianguo, ZHANG Yuebin, et al. Influence to soil moisture倅ield and quality components of sugarcane by irrigation in maturing stage[J]. Agricultural Research in the Arid Areas, 2013, 31(6): 57-66. (in Chinese with English Abstract)
    [31] 赵俊,白亚东,赵兴东,等. 灌溉与干旱条件下甘蔗工农艺性状的相关性分析与品种抗旱性评价[J]. 湖南农业大学学报(自然科学版),2016,42(6):579-86.ZHAO Jun, BAI Yadong, ZHAO Xingdong, et al. Drought resistance evaluation and correlation analysis of agronomic and quality traits of sugarcane under irrigated and rainfed conditions[J]. Journal of Hunan Agricultural University (Natural Sciences), 2016, 42(6): 579-586. (in Chinese with English Abstract)
    [32] 王鞠萱,陈优强,冯晓敏,等. 气象因子对云南勐腊蔗区主栽甘蔗品种糖分性状的影响[J]. 甘蔗糖业,2020,49(6):25-32.WANG Juxuan, CHEN Youqiang, FENG Xiaomin, et al. Effects of meteorological factors on sugar traits of the main sugarcane cultivars in mengla county, Yunnan province[J]. Sugarcane And Canesugar, 2020, 49(6): 25-32. (in Chinese with English Abstract)
  • 期刊类型引用(5)

    1. 邓家卓. 北海市第十五轮国家甘蔗品种区域试验. 现代农业科技. 2024(10): 48-52 . 百度学术
    2. 汤蓬辉,黄少忠,张志浩,颜金,邬琰元. 基于区域多模态气象的黑皮甘蔗种植管理研究. 内蒙古气象. 2024(04): 36-40 . 百度学术
    3. 史博然,韩娜娜,彭致功,周青云,李松敏,王敏敏. 基于APSIM-Maize模型的石羊河流域春玉米适宜种植区产量模拟及参数优化. 节水灌溉. 2024(12): 55-62+71 . 百度学术
    4. 覃庆福,陈家福,李梅青,韦华祥,凌远红. 来宾市不同蔗区甘蔗品种引进比较试验. 广西糖业. 2023(03): 10-13 . 百度学术
    5. 万成现,皮成艳,扈志东. 我国甘蔗产业研究热点及发展趋势. 广西糖业. 2023(04): 30-38 . 百度学术

    其他类型引用(5)

计量
  • 文章访问数:  91
  • HTML全文浏览量:  0
  • PDF下载量:  120
  • 被引次数: 10
出版历程
  • 收稿日期:  2022-10-18
  • 修回日期:  2023-01-15
  • 发布日期:  2023-02-14

目录

    /

    返回文章
    返回