Pickup device with shovel teeth and double cylindersfor the bunch of peanuts
-
摘要:
两段收获是国内花生机械化收获主要方式。大中型花生捡拾收获机所配置的弹齿滚筒式捡拾装置结构复杂且易损坏,捡拾过程中不仅存在植株抛起、壅堆、漏捡和掉果等问题,弹齿弹出地面时也会造成扬尘,严重制约了花生收获作业效率、增加花生损失,加剧环境污染。针对上述问题,该研究在分析弹齿滚筒捡拾花生过程基础上,提出了由铲齿、拨秧滚和捡拾滚(简称双滚筒)构成的花生捡拾机构,研制出相应的捡拾装置样机并进行田间性能试验;基于Box-Behnken中心组合设计原理,以植株捡拾率和荚果落果率为试验指标以机组前进速度,捡拾速比和铲齿半径为试验因素进行了正交试验,并对试验因素进行优化。试验结果表明,铲齿-双滚筒组合式花生捡拾装置作业中不存在植株抛起、壅堆和弹齿扬尘等问题;在田间试验条件下,作业速度为1.2 m/s、捡拾速比为1.2、铲齿半径为498 mm时,花生植株捡拾率均值为99.22%,落果率均值为1.84%,均优于花生捡拾作业标准要求。铲齿-双滚筒研究结果对解决国内花生捡拾收获机存在的捡拾问题具有重要意义。
Abstract:Two-stage peanut harvesting is one of the most popular mechanized ways in China. Among them, the commonly used pickup device can be equipped with the spring teeth cylinder in large and medium-sized picking and harvesting machines. There are some challenges, including plant throwing, stacking, missing picking, and fruit falling damage. At the same time, the spring teeth can circularly scratch into and out of the ground during the operation of the pickup device, leading to dust. The efficiency of peanut picking and harvesting can be seriously restricted to increase the loss of pods falling during harvesting. The action of the pickup time on the ground has also exacerbated the dust pollution. This study aims to combine the structure of the toothed drum mechanism in the new type of pickup device with the shovel teeth and double-cylinders for bunch upright peanuts. According to the upright peanut plant shape, strip laying, motion posture and dynamics during picking, the peanut pickup device consisted of shovel teeth, a pushing cylinder, and a picking cylinder (referred to as a double cylinder). The better performance of picking peanuts was achieved in the sequential coordination with four beats of shovel pluck pick delivery. The traditional single-toothed drum pickup device was replaced in this case. The shovel tooth structure of the circular arc working surface was designed to determine the range of shovel tooth radius using geometric relationships. The structure of pushing teeth and picking teeth was designed with a backward inclination angle. The structure and rotation radius of two rollers were determined to design the semi-enclosed protective plate structure with the specific parameters. The motion parameters of the unit were obtained to simulate the range of picking speed ratio after ADAMS simulation. A prototype of a combined peanut pickup device was conducted to develop the shovel teeth, picking cylinder, pushing cylinder, and half guard board in field performance tests. According to Box Behnken central combination design, an orthogonal experiment was conducted on the peanut plant picking rate and peanut pod drop rate as experimental indicators, while the unit forward speed, picking speed ratio, and shovel teeth radius as experimental factors. The test results indicate that the shovel teeth double cylinder combined peanut pickup device operated smoothly, where there were no plant throwing, pile up, and dust from bullet teeth during peanut picking; The mean value of picking rate of peanut plant was 99.22%, and the mean value of pod loss rate was 1.84%, when the forward speed was 1.2 m/s, the picking speed ratio was 1.2, and the shovel teeth radius was 498 mm under field experimental conditions. The findings fully met the requirements for peanut picking.
-
Keywords:
- agricultural machinery /
- harvester /
- peanut /
- pickup device
-
0. 引 言
花生是重要油料作物和经济作物。国内花生常年种植面积4.8×106 hm2,约占世界花生种植面积的17%;总产量1830万t,约占世界花生产量的37%,居世界首位[1-2]。然而,国内花生收获机械化技术仍相对落后,制约了花生生产发展和国际市场竞争力[3-5]。
两段收获是国内花生机械化收获的主要方式,即前段用花生起收机完成挖掘、植株与土壤分离和放铺,后段用花生捡拾收获机完成晾晒后花生的地面捡拾、摘果、清选、荚果和秸秆处理等。捡拾是两段式花生机械收获的关键环节,不仅影响收获效率,而且易造成花生植株漏检、荚果掉落和损伤等损失[6-8],因此,新型高性能花生捡拾装置受到普遍重视。美国最早实现两段式花生机械化收获,也是技术最先进的国家,结合匍匐型花生起收放铺技术,相继研制出专用的齿带式、曲柄-滑道式弹齿和无滑道弹齿滚筒式花生捡拾装置[9-10]。国内用于两段式收获的花生捡拾收获机研究起步较晚,除小型花生捡拾收获机采用专用齿带式捡拾装置外,大中型花生捡拾收获机捡拾装置尚在不断改进中,其中,许涛等[11-14]在研究捡拾弹齿运动规律基础上,采用非支配遗传算法NSGA-Ⅱ对弹齿滚筒式捡拾机构进行优化设计,发明了几种花生捡拾机构;王申莹等[15]设计了一种“凸”字型弹齿滑板式捡拾装置,对输送装置进行了优化设计;王伯凯等[16]通过秧蔓力学特性试验对捡拾装置的弹齿结构和排列方式进行优化设计;胥南等[17]对弹齿滚筒式捡拾装置进行运动学分析,建立了漏捡区间的数学模型;陈有庆等[18]研制了一种适于割秧后收获的弹齿式花生捡拾装置;高连兴等[19-21]在比较中国和美国花生捡拾技术基础上,进行了直立型花生捡拾装置研究。
然而,国内花生捡拾装置研究仍未突破曲柄-滑道弹齿滚筒式机构的限制,花生捡拾收获存在问题一直未能得到解决。为此,本文基于国内直立型花生性状和弹齿滚筒捡拾特点及适应性分析,提出一种适于直立型花生的“铲齿铲起植株、拨秧捡秧协同、弹齿离地捡拾”的花生捡拾技术方案,研制铲齿-双滚筒组合捡拾装置并进行田间性能试验。
1. 花生株型与条铺特点及弹齿滚筒捡拾的适应性
1.1 花生株型与条铺特点
栽培花生主要有匍匐和直立2种基本株型。由于地理、气候条件和栽培制度差异,美国、巴西和阿根廷等国主要种植匍匐型花生,花生侧枝多且沿地面匍匐生长,单株结果数量多,荚果水平分布范围大,机械起收时容易实现花生荚果和根部朝上的连续翻转放铺,既有利于田间通风晾晒又便于机械捡拾收获,采用无滑道弹齿滚筒式捡拾装置,提高收获效率和机械的可靠性[16]。
国内主要种植直立型花生,分枝少、主茎和分枝基本直立生长,单株结果数量少且主要集中在根部周围,花生起收时很难形成荚果朝上、连结性好的花生条铺,既不利于田间通风晾晒,也不利于地面捡拾,弹齿式花生捡拾装置作业时容易出现植株“壅堆”“抛起”“断条”和“打土”等问题[11]。
1.2 弹齿滚筒捡拾的适应性
弹齿滚筒(通常指有曲柄-滚轮-凸轮滑道机构)式捡拾装置是一种传统捡拾装置,广泛用于全喂入水稻、小麦、大豆和牧草捡拾收获机,目前也应用于花生捡拾收获机,其结构原理如图1a所示,主要由捡拾弹齿(简称捡拾齿或弹齿)、弹齿轴、中心轴、曲柄、滚轮、凸轮滑道和护板等构成,每根弹齿轴上固定一排弹齿,弹齿轴两端除与滚筒盘铰接外,其中一端与曲柄一端固联成刚体,曲柄另一端铰接的滚轮可在固定的凸轮滑道内滚动,从而构成一个曲柄-滚轮-凸轮滑道运动机构,可构成弹齿随弹齿轴、中心轴转动和相对摆动的弹齿滚筒;弹齿滚筒式捡拾机构中的弹齿随收获机组前进、滚筒转动的同时,自身相对于滚筒按一定规律摆动,而凸轮滑道、滚轮和曲柄直接控制弹齿摆动规律。在花生捡拾过程中,弹齿随滚筒转动至不同位置时需保持相应姿态,而弹齿姿态变化所对应的滚筒转动位置关系定义为弹齿工位,用滚筒转角即捡拾工位角表示。如图1b所示,当捡拾滚筒转动一周即完成一个捡拾循环,每排捡拾弹齿均相继经历捡拾、举升、推送和空回4个阶段[11]。
图 1 弹齿滚筒捡拾结构与捡拾过程示意图1.弹齿2.中心轴3.曲柄4.弹齿轴5.凸轮滑道6.滚轮 7.护板8.后侧板1. Spring teeth 2. Shaft 3. Crank 4. Tine shaft 5. Cam slide 6. Contact roller 7. Guard board 8. Rear side panel注:β1~β4为弹齿捡拾、举升、推送和空回阶段的工位角,rad;V为捡拾装置水平移动速度,m·s-1;ω为滚筒转动角速度,rad·s-1。Note:β1-β4 are the station angle for pickup, lifting, pushing, and empty return stages of spring teeth, rad;V is the horizontal speed of the pickup device,m·s-1;ω is rotational angular speed of the cylinder,rad·s-1.Figure 1. Structure and pickup process diagram of spring-finger cylinder picker在弹齿完成一个捡拾循环的4个工位中,工位角β1对应的捡拾工位是关键工位,其弹齿姿态及所处位置和作用:一是相对于滚筒径向前倾斜一定角度的弹齿在空回工位即将结束时划入土壤,随着滚筒转动而弹出地面并接触花生植株;二是弹齿将晾晒于地表的花生植株挑起并沿护板向上运动;三是拾起花生植株的弹齿相对于滚筒径向逐渐向后摆动,直至与滚筒径向重合。基于直立型花生植株及条铺性状、弹齿捡拾工位特征和植株运动学分析发现,弹齿滚筒捡拾机构对直立型花生存在以下适应性问题:
1)弹齿运动方向影响捡拾。在捡拾工位前半段,弹齿相对于滚筒的摆动速度很小,弹齿弹出地面的瞬间速度主要取决于机组行进速度和随滚筒转动速度的合成速度,其方向近似于机组前进方向,即弹齿对花生植株作用力指向滚筒前上方,因直立型花生条铺的连续性和强度不佳,株间约束阻力不足,花生植株将沿弹齿作用力方向离开弹齿。
2)弹齿瞬间冲击力影响捡拾。弹齿在空回工位后期已划入土壤并因弹性变形而蓄能,当弹齿弹出地面、弹性变形能释放使齿端速度瞬间变大,因而将会导致花生植株受到冲击而造成植株抛起、花生荚果和果柄部位受到冲击而造成荚果掉落和损伤、弹齿不断划入和弹出地面而挑起表土产生飞尘。
3)花生株间连接力不足影响捡拾。花生植株间作用力是花生条铺连续性的决定因素,也是决定弹齿滚筒捡拾性能发挥的关键。直立型花生条铺的株间作用力相对于弹齿作用于花生植株的约束力较小,植株在弹齿作用时容易推离和抛起,同时也不易随被捡拾的花生植株一起移向护板,形成连续捡拾花生条铺。
可见,因直立型花生株间作用力较小,条铺连续性差,弹齿滚筒捡拾装置捡拾直立型花生时存在适应性差的问题,会出现植株壅堆、抛起、断条和荚果掉落等,也会因“打土”扬尘而污染环境。
2. 铲齿-双滚筒捡拾原理与机构
2.1 铲齿-双滚筒捡拾原理
基于直立型花生株型及条铺捡拾的适应性问题,本文提出 “铲齿铲起植株,弹齿离地捡拾,拨秧捡秧协同”的铲齿-双滚筒组合式直立型花生捡拾机构(图2)。该捡拾机构主要由铲齿、拨秧滚、捡拾滚、护板、挡秧齿、搅龙和筛板构成,花生捡拾过程分铲秧、拨秧、拾秧和推秧4个阶段。
图 2 铲齿-双滚筒捡拾原理1.铲齿 2.拨秧滚 3.捡拾滚 4.护板 5.挡秧齿 6.搅龙 7.筛板1.Shovel teeth 2. Pushing cylinder 3. Picking cylinder 4. Shield 5. Seedling blocking teeth 6. Spiral conveyor 7. Sieve plate注:ω′为搅龙转动角速度,rad·s−1;h为铲齿入土深度,mm;Ⅰ为拨秧滚与捡拾滚重合区域。Note:ω′ is rotational angular speed of the auger,rad·s−1;h is the depth of shovel teeth into soil,mm;Ⅰ is the overlapping area of pushing cylinder and picking cylinder.Figure 2. Shovel teeth - two cylinders peanut pickup principle铲秧是花生捡拾第一步,由划入地表10~20 mm的铲齿将花生植株铲离地面一定高度,改变捡拾齿地面花生捡拾为离地捡拾,捡拾齿不与土壤接触,从而减轻了捡拾齿对花生植株击打,使捡拾过程更加平顺。
拨秧是花生捡拾第二步,由拨秧滚上的弹性拨秧齿和铲齿完成。由于直立型花生植株与地面间、株间作用力有限,铲秧时植株容易随铲齿向前随动而不易向上滑动,花生植株离地高度有限。逆时针转动的拨秧齿可使花生植株继续沿铲齿上滑而提升离地高度,便于不入土的捡拾齿捡拾。
拾秧是花生捡拾第三步,也是关键步骤,由捡拾齿、拨秧齿、铲齿和护板共同完成。拨秧滚和捡拾滚同步相向转动、捡拾齿和拨秧齿排数相等并保持“拨秧齿在前、捡拾齿在后”的相对相位关系,二者形成回转重合区Ⅰ。当捡拾齿接驳沿铲齿移至一定高度的花生植株后,拨秧齿和捡拾齿对花生植株施加反向方作用力,花生植株受到的作用力在水平方向分力相互抵消而向上拾起的合力增大,使花生捡拾变得顺畅。
推秧是一个捡拾循环的最后阶段,即当捡拾齿转至斜上方、拨秧齿退出拾秧作用时,花生植株则在捡拾齿独立推动下沿护板向输送搅龙滑动,直至捡拾齿端部离开护板。为防止拨秧齿退出作用时可能挂秧以及花生植株因离心力而离开护板,在拨秧齿和捡拾齿的上方设有挡秧齿。
2.2 铲齿-双滚筒捡拾机构
铲齿-双滚筒捡拾机构如图3所示,主要由1排铲齿、逆时针转动的拨秧滚及拨秧齿、顺时针转动的捡拾滚及捡拾齿、挡秧齿和半圆形护板等构成。
由于铲齿和拨秧齿使花生植株离地一定高度,捡拾齿无需从地面伸出捡拾花生,捡拾齿接触花生植株时作用方向有所改变,相向转动的拨秧齿和捡拾齿协同捡秧,无需弹齿相对捡拾滚摆动,因此不再需要类似传统弹齿捡拾装置的曲柄、滚轮和凸轮滑道及其机构的运动约束,简化了捡拾机构并可增加捡拾齿排数,从而提高捡拾效果与机构稳定性和可靠性。
3. 铲齿-双滚筒捡拾关键部件设计
3.1 铲齿设计
为了使花生植株顺利铲离地面一定高度并顺畅地上滑移到护板,将铲齿设计成具有弧形斜边的片状三角形结构,底边划入地面约10~20 mm,与地面形成一定的铲拾角,铅锤边上部略呈后倾并与护板垂直端留有一定间隙,以防花生植株从铲齿移向护板过程中卡掉花生荚果。铲齿铅锤边中下部位通过安装板与铲齿架固定,回转的捡拾齿从片状铲齿之间和铲齿架上方通过。
铲齿铲起的花生植株高度对捡拾有重要影响,不仅与铲齿弧形曲率、铲齿的铲拾角、花生植株与铲齿弧形工作面摩擦力有关,而且也与花生植株和地面、花生植株之间摩擦力等有关。如图4所示,为寻求花生植株沿铲齿被动上移临界条件,将花生植株简化为质点P并进行受力分析,确定花生植株沿铲齿上滑应满足的条件:
图 4 花生植株受力图注:F1为地面与花生条铺对质点P的作用力,N;G为P的重力,N;Fm1为P的向心力,N;Ff1为铲齿对花生植株的摩擦力,N;N1为铲齿对花生植株支持力,N;α0为铲齿入土角,(°);α为P所在铲齿上切线与水平方向的夹角,(°)。Figure 4. Stress diagram of peanut plantNote:F1 is the force of ground and peanut strips on mass point P,N;G is the gravity of P,N;Fm1 is the centripetal force of P,N;Ff1 is the friction force of shovel teeth on peanut plants,N;N1 is the support of shovel teeth on peanut plants,N;α0 is oil angle of shovel teeth,(°);α is the angle between the tangent and the horizontal direction of P on the shovel teeth ,(°).$$ {F_1}\cos \alpha \gt {\mu _1}({F_1}\sin \alpha + G\cos \alpha ) + G\sin \alpha $$ (1) 即:
$$ \alpha \lt \arctan (k{\mu _0}) - {\theta _1} $$ (2) 式中F1=kμ0mg;G=mg;m为花生植株的质量,kg;g为重力加速度,m/s2,g=9.8;μ0为花生植株与地面摩擦系数,由试验测得μ0=0.7;μ1为花生植株与铁板的摩擦系数,μ1=tanθ1,θ1为花生植株与铁板表面的摩擦角,由试验测得θ 1=24°;k为对质点P发生作用的花生植株数量。
如图5所示,为确定相关数据并验证,进行了铲齿结构和铲拾角的初步试验。取对质点P作用的花生植株个数k=3~5,根据式(2)得出花生植株沿铲齿上滑时α极限值为40.5°~50°。考虑到铲齿结构以及入土阻力,参考触土部件入土角范围15°~25°[22],确定铲齿入土角α0=20°。
花生植株铲起的竖直高度由铲齿半径决定,由几何关系(图6)有:
图 6 铲齿入土时刻的几何关系图注:α1为N点铲齿切线与水平方向的夹角,(°);H1为拨秧齿最小离地间隙,mm;β1为圆弧MN对应的圆心角,(°);β2为直线MN与水平面的夹角,(°);R为铲齿半径,mm。Figure 6. Geometric relationship diagram at moment of shovel teeth into soilNote:α1 is the angle between the tangent line of the N-point shovel tooth and the horizontal direction,(°);H1 is the minimum ground clearance of pushing teeth,mm;β1 is the entral angle of arc MN,(°);β2 is the angle between MN and horizontal plane,(°);R is shovel teeth radius,mm.$$ \left\{ \begin{aligned} & H_1=2R\sin\frac{\beta_1}{2}\sin\beta_2 \\ & {\beta}_1={\alpha}_1-{\alpha}_0,{\beta}_2 =({\alpha}_0+{\alpha}_1)/2 \end{aligned} \right.$$ (3) 拨秧齿运动至最低点时与地面的高度H1设计为75 mm,因此花生植株铲起高度应大于H1。根据花生植株沿铲齿上滑的极限角度α,取α1=40.5°,得出铲齿半径R≥418.3 mm。结合铲齿的配置关系以及确保铲齿较优的强度,铲齿半径取420~580 mm。
铲齿总成结构如图7所示,主要由铲齿架、安装板和铲齿片构成。综合考虑结构强度和铲齿的土壤阻力,铲齿片与安装板采用8 mm钢板割制而成。为适应起收后花生植株无序、荚果同侧和植株搭接的3种条铺状态,测量典型品种花生侧枝的范围155~255 mm、荚果的范围120~230 mm,捡拾时至少需要2个铲齿片与花生植株接触,因此设计相邻铲齿片间距为60 mm。
3.2 拨秧滚和捡拾滚设计
3.2.1 拨秧滚
如图8所示,拨秧滚主要由拨秧滚轴、拨秧齿、拨秧齿杆和辐轮盘等构成,其中,拨秧齿等间距地安装在拨秧齿杆上,拨秧齿杆与回转轴通过辐轮盘连接。为使花生植株在拨秧齿和捡拾齿之间的运动重合区交接顺畅,拨秧齿与捡拾齿的齿端速比需略大于1,即拨秧略微在前、拾秧略微在后。但若速比过大,拨秧齿作用于花生植株的后上方向作用力变大,花生植株容易甩至捡拾滚上方,造成捡拾齿与花生植株的二次触接而产生二次击打,增大了花生荚果的落果机率。参考现有花生捡拾收获机弹齿滚筒捡拾装置[15,18],同时,考虑到本机构捡拾滚筒无曲柄-凸轮-滑道的运动干涉限制,捡拾齿不参与花生植株的地面捡拾,而只完成花生植株举升和推送工作,因而其回转半径可略小一些,以减小护板外径并降低花生植株升起高度,据此确定捡拾滚半径R2=230 mm,拨秧齿回转半径R1=240 mm,齿端速比为1.05。为使花生植株依次推向铲齿和护板、防止离开运动重叠区时带离植株,拨秧齿由后倾角为40°的直线段和半径为190 mm的圆弧段组合而成;拨秧齿的齿间距设计为120 mm,回转平面与铲齿、护板中心对称面重合。齿端与铲齿弧形面距小间隙为15~25 mm。
3.2.2 捡拾滚
铲齿和拨秧齿使花生植株离开地面一定高度后,捡拾齿不需要入土捡拾地面花生植株,而且有在拾秧阶段的拨秧齿和捡拾齿协同作用。捡拾滚与拨秧滚结构相似(图9),主要由捡拾齿、捡拾齿杆、辐轮盘和回转轴构成。为避免推送阶段捡拾齿与护板对花生植株钳制作用,设计捡拾齿后背倾角为30°;捡拾齿在两铲齿间伸出,相邻捡拾齿间距为60 mm。捡拾齿的齿端设计为折弯结构,以便于捡拾和进一步阻碍花生植株沿捡拾齿滑动,折弯长度为15 mm,折弯角度为15°。
3.3 护板
为防止花生植株缠绕捡拾滚,传统的弹齿滚筒捡拾装置采用封闭式护板,弹齿从固定的护板间隙中伸出。在本文设计的捡拾装置中,因铲齿弧形工作边与护板形成平滑过渡连接,捡拾齿首先从两铲齿片间不入土地伸出,然后从铲齿间隔中进入护板间隙,直至推秧阶段结束。因此,护板设计为半封闭结构,其外轮廓为一段直线和两段圆弧组成的过渡结构(图10)。
图 10 推送阶段花生植株受力分析注:F2为捡拾齿对质点P的作用力,N;Fm为P绕护板转动的向心力,N;N为护板对P的支持力,N;Ff为护板对P的摩擦力,N;ψ为Fm与竖直方向的夹角,(°);δ为捡拾齿与护板夹角,(°);R3为护板半径,mm。Figure 10. Diagram of peanut plant stress analysis in pushing processNote:F2 is the force of picking teeth on mass point P,N;Fm is the centripetal force of P rotating around the shield,N;N is the support of the shield for P,N;Ff is the friction force between the shield and P,N;ψ is the angle between Fm and the vertical direction,(°);δ is the angle between picking teeth and shield,(°);R3 is the radius of shield.考虑到捡拾过程推秧后半段,捡拾齿与护板间不能对花生植株钳制,二者之间的受力关系即钳制角δ应满足以下条件:
$$ \left\{ {\begin{array}{*{20}{c}} {G\sin \psi + {F_2}\sin \delta - {F_f} \gt 0} \\ {{F_f} = {\mu _1}N = {\mu _1}(G\cos \psi + {F_m} + {F_2}\cos \delta )} \end{array}} \right. $$ (4) 整理得:
$$ \delta \gt \arcsin \frac{{{\mu _1}m{\omega ^2}{R_3} - \sqrt {1 + {\mu _1}^2} mg\sin (\psi - {\theta _1})}}{{\sqrt {1 + {\mu _1}^2} {F_2}}} + {\theta _1} $$ (5) 式中Ff=μ1N。
由式(5)可知,捡拾齿与护板之间应满足最小钳制角δmin>57°。据此设计的护板结构如图11所示,其直线段长227 mm,圆弧段半径分别为160 和268 mm,钳制角δ为78°。为避免花生荚果落入护板间隙产生掉果损失,护板间隙应小于花生荚果的最小宽度。根据各品种花生荚果测量统计结果,确定护板间隙为10 mm。为使捡拾齿顺利进入护板之间间隔,将护板与铲齿连接的直线段底端设计为“渐缩”结构(图11b),使相邻两护板底部间隙由大到小过渡。
3.4 拨秧齿和捡拾齿排数的确定
3.4.1 拨秧和捡拾速比的确定
在捡拾作业过程中,拨秧齿和捡拾齿既随机组前进,又绕各自回转轴转动,二者的合成运动轨迹为余摆线,摆线形状和拨秧齿、捡拾齿齿端线速度与机组前进速度的比(捡拾速比)λ有关。捡拾作业时,拨秧齿在最低点与捡拾齿在最高点均应满足对花生植株的向后作用条件,即摆线存在环扣。本捡拾机构拨秧滚和捡拾滚转速相同、转向相反,拨秧齿回转半径大,齿端线速度大,因此,以捡拾滚为设计标准定义前进速度与回转速度的相对关系,即捡拾速比为
$$ \lambda = \frac{{\omega {R_2}}}{V} $$ (6) 捡拾滚筒半径略小于拨秧滚筒半径,捡拾速比大于1时,二者均存在环扣,可正常工作。
通过ADAMS获得不同速比的拨秧齿与捡拾齿运动轨迹,如图12所示,当λ>1时,捡拾齿和拨秧齿的齿端运动轨迹均存在环扣,此时捡拾齿在最高点、拨秧齿在最低点的齿端绝对速度均大于0且与机组前进速度方向相反,捡拾齿和拨秧齿均能正常工作;但λ<1时,即便ωR2>V(R2为拨秧滚筒回转半径)、拨秧滚筒仍可正常工作,但捡拾齿无法在推秧阶段顺畅地推送花生植株进入输送搅龙,造成植株在护板上部壅堆。参考现有弹齿滚筒捡拾速比以及花生捡拾收获机和谷物收获机作业速度0.8~1.5 m/s[23-24],确定捡拾速比范围为1.1~1.3。
3.4.2 齿排数确定
除捡拾速比外,齿排数决定拨秧齿节距和捡拾齿节距,如式(7)所示,利用式(8)计算得到捡拾速比为1.1和1.3时不同排数拨秧齿和捡拾齿的节距,如表1所示,通过ADAMS软件获得4排拨秧齿和捡拾齿的齿端运动轨迹[25-27],如图13所示。
表 1 不同排数的拨秧齿与捡拾齿节距Table 1. Pitch between different rows of pushing teeth and picking teethmm 项目Items λ 齿排数Number of teeth rows n 4 5 6 拨秧齿
Pushing teeth1.1 324.7 274.2 228.5 1.3 290.0 232.0 193.3 捡拾齿
Picking teeth1.1 328.4 263.7 219.0 1.3 278.0 222.3 185.3 图 13 四排拨秧齿与捡拾齿运动轨迹注:S1、S2分别为λ=1.1时的拨秧齿和捡拾齿节距,mm;S1'、S2'分别为λ=1.3时的拨秧齿和捡拾齿节距,mm。Figure 13. Motion locus of four rows of pushing teeth and picking teeth with different rowsNote:S1, S2 is the pitch of the pushing teeth and picking teeth when λ=1.1,repectively, mm;S1' , S2' is the pitch of the pushing teeth and picking teeth when λ=1.3,respectively, mm.$$ n{S_i} = V{t_0} $$ (7) 联立式(6)~(7)得:
$$ {S_i} = \frac{{2\pi {R_i}}}{{\lambda n}} $$ (8) 式中Si为节距,mm;下标i=1代表拨秧齿,i=2代表捡拾齿;Ri为滚筒半径,mm;n为齿排数;t0为滚筒转动一周所需时间,s。
相同齿排数下,捡拾速比越小,节距越大;两滚筒捡拾速比与齿排数相同情况下,拨秧节齿距略小于捡拾齿节距。通过花生植株形态参数统计分析,直立型花生植株株丛尺寸在155~255 mm,花生条铺密度均匀且荚果同侧铺放、花生植株紧密铺放时,为确保良好的拨秧捡拾效果,降低二次作业造成的掉果损失,拨秧齿与捡拾齿携带花生植株的数量应小于3,同时考虑加工成本、安装难易程度,确定拨秧齿与捡拾齿均为5排。
4. 捡拾装置田间性能试验
4.1 试验设备及条件
为验证铲齿-双滚筒组合式花生捡拾装置田间作业性能,根据设计结果制作试验样机(图14a),试验设备和仪器包括东方红404拖拉机、转速测量仪、电子秤、秒表和米尺等。
试验在郑州市双丰机械制造有限公司(吉林农业大学研究生科研实习基地)花生试验基地进行,试验花生品种为“豫花22”,大垄双行种植,垄距700 mm,产量约3000~3500 kg/hm3,花生茎秆含水率为19.14%,果柄含水率为16.98%,果壳含水率为15.54%。花生捡拾装置试验样机由拖拉机牵引,铲齿入土深度10~20 mm,试验区间长度约为50 m。
4.2 试验方案
参照NY/T502-2016《花生收获机作业质量》[28]和NY/T2204-2012《花生收获机质量评价技术规范》[29],选取花生植株捡拾率和落果率为试验指标,以机组前进速度、捡拾速比和铲齿半径为试验因素,根据响应面分析法和Box-Behnken Design中心组合试验设计原理[30-31],设计三因素三水平正交试验(表2)。捡拾率与落果率按式(9)~(10)计算。
表 2 试验因素与水平Table 2. Factors and levels of experiment水平
Level前进速度
Forward speed A/(m·s−1)捡拾速比
Pickup speed ratio B铲齿半径
Shovel teeth radius C/mm-1 0.9 1.1 450 0 1.2 1.2 500 1 1.5 1.3 550 $$ J = \frac{{M - \Delta M}}{M} \times 100\text{%} $$ (9) 式中J为捡拾率,%;M为试验花生植株总体质量,g;ΔM为漏捡花生植株质量,g。
$$ L = \frac{{\Delta M{}_{\text{g}}}}{{{M_{\text{g}}} + \Delta {M_{\text{g}}}}} $$ (10) 式中L为落果率,%;Mg为试验花生荚果总质量,g;ΔMg为掉落花生荚果质量,g。
4.3 试验结果与分析
试验方案与结果见表3。响应面分析结果如图15、图16所示。
表 3 试验方案与试验结果Table 3. Test plan and results序号
Serial No.A/( m·s−1) B C/mm 捡拾率
Pickup rate J/%落果率
Fruit drop rate L/%1 0.9 1.1 500 99.12 2.52 2 1.5 1.1 500 95.98 3.08 3 0.9 1.3 500 99.87 3.96 4 1.5 1.3 500 99.04 2.14 5 0.9 1.2 450 99.41 3.62 6 1.5 1.2 450 97.74 2.85 7 0.9 1.2 550 99.10 3.21 8 1.5 1.2 550 96.94 2.31 9 1.2 1.1 450 97.35 2.96 10 1.2 1.3 450 99.74 3.74 11 1.2 1.1 550 96.57 2.71 12 1.2 1.3 550 98.38 3.28 13 1.2 1.2 500 99.25 1.73 14 1.2 1.2 500 98.73 1.91 15 1.2 1.2 500 98.57 1.61 16 1.2 1.2 500 98.97 1.82 17 1.2 1.2 500 99.58 1.44 1)试验因素对捡拾率的影响
从图15a可以看出,减小前进速度和增大捡拾速比有助于增大捡拾率。由图15b可以看出,当铲齿半径在490~550 mm时,增大前进速度有助于提高捡拾率。从图15c可以看出,当铲齿半径为在470~490 mm时,捡拾率随捡拾速比的增大而增大。
2)试验因素对落果率的影响
从图16a可以看出,当前进速度在1.1~1.3 m/s,捡拾速比在1.15~1.2时,落果率存在最小值。从图16b可以看出,当前进速度在1.1~1.3 m/s,铲齿半径在470~510 mm时,落果率存在最小值。从图16c可以看出,当捡拾速比在1.1~1.2,铲齿半径在490~510 mm时,落果率存在最小值。
4.4 参数优化与验证
根据捡拾率与落果率响应面模型以及试验因素对试验指标的影响规律,为进一步提高装置捡拾性能,在试验因素取值范围内,以捡拾率最大、落果率最小为目标函数,建立数学模型:
$$ \left\{\begin{array}{*{20}{l}}\max Y_1 \\ \min Y_2 \\ \left\{\begin{array}{*{20}{c}}0.9\; \mathrm{m}/\mathrm{s}\leqslant A\leqslant1.5\; \mathrm{m}/\mathrm{s} \\ 1.1\leqslant B\leqslant1.3 \\ 450\; \mathrm{mm}\leqslant C\leqslant550\; \mathrm{mm}\end{array}\right.\end{array}\right. $$ (11) 通过Design-Expert软件数据优化模块求解获得满足目标函数的最优参数组合为:前进速度1.177 m/s、捡拾速比1.218、铲齿半径498.698 mm,对应的捡拾率为99.265%、落果率为1.813%。为验证预测值的准确性,考虑到捡拾机构工作参数很难达到理论求解值,选取前进速度1.2 m/s、捡拾速比1.2、铲齿半径498 mm,进行5次重复试验,试验结果如表4所示,得到捡拾率和落果率平均值为99.22%、1.84%,试验过程中花生植株无抛起、壅堆现象,捡拾效果较优。试验值与理论预测值非常接近,优于花生捡拾收获要求。
表 4 验证试验数据Table 4. Verify experimental data试验号Test number 捡拾率Pickup rate J/% 落果率Pod loss rate L/% 1 99.43 1.95 2 98.96 1.74 3 99.15 1.88 4 99.26 1.78 5 99.30 1.85 平均值
Mean value99.22 1.84 5. 结 论
1)为解决捡拾过程中花生植株壅堆、漏捡、断条等问题,在分析花生株型与条铺、弹齿滚筒捡拾机构特点及对直立型花生条铺适应性基础上,提出了铲、拨、拾、送分步捡拾的铲齿-双滚筒技术方案。
2)在捡拾装置工作原理分析基础上,进行了关键部件结构设计与参数确定。通过花生植株力学分析,得出花生植株沿铲齿上滑和沿护板下滑不钳制的极限条件;确定了捡拾滚与拨秧滚的回转半径和结构;通过ADAMS运动仿真,确定了捡拾装置捡拾速比范围和齿排数。
3)试制铲齿-双滚筒花生捡拾装置试验样机并基于响应面法和Box-Behnken中心组合设计原理,以前进速度、捡拾速比和铲齿半径为因素,以捡拾率和落果率为指标,进行三因素三水平的样机田间性能试验,分析了各因素对指标的影响并对工作参数进行优化。结果表明,最优参数组合为前进速度1.2 m/s、捡拾速比1.2、铲齿半径498 mm,对应的平均捡拾率为99.22%、平均落果率为1.84%,试验结果优于花生捡拾作业要求。
-
图 1 弹齿滚筒捡拾结构与捡拾过程示意图
1.弹齿2.中心轴3.曲柄4.弹齿轴5.凸轮滑道6.滚轮 7.护板8.后侧板1. Spring teeth 2. Shaft 3. Crank 4. Tine shaft 5. Cam slide 6. Contact roller 7. Guard board 8. Rear side panel注:β1~β4为弹齿捡拾、举升、推送和空回阶段的工位角,rad;V为捡拾装置水平移动速度,m·s-1;ω为滚筒转动角速度,rad·s-1。Note:β1-β4 are the station angle for pickup, lifting, pushing, and empty return stages of spring teeth, rad;V is the horizontal speed of the pickup device,m·s-1;ω is rotational angular speed of the cylinder,rad·s-1.
Figure 1. Structure and pickup process diagram of spring-finger cylinder picker
图 2 铲齿-双滚筒捡拾原理
1.铲齿 2.拨秧滚 3.捡拾滚 4.护板 5.挡秧齿 6.搅龙 7.筛板1.Shovel teeth 2. Pushing cylinder 3. Picking cylinder 4. Shield 5. Seedling blocking teeth 6. Spiral conveyor 7. Sieve plate注:ω′为搅龙转动角速度,rad·s−1;h为铲齿入土深度,mm;Ⅰ为拨秧滚与捡拾滚重合区域。Note:ω′ is rotational angular speed of the auger,rad·s−1;h is the depth of shovel teeth into soil,mm;Ⅰ is the overlapping area of pushing cylinder and picking cylinder.
Figure 2. Shovel teeth - two cylinders peanut pickup principle
图 4 花生植株受力图
注:F1为地面与花生条铺对质点P的作用力,N;G为P的重力,N;Fm1为P的向心力,N;Ff1为铲齿对花生植株的摩擦力,N;N1为铲齿对花生植株支持力,N;α0为铲齿入土角,(°);α为P所在铲齿上切线与水平方向的夹角,(°)。
Figure 4. Stress diagram of peanut plant
Note:F1 is the force of ground and peanut strips on mass point P,N;G is the gravity of P,N;Fm1 is the centripetal force of P,N;Ff1 is the friction force of shovel teeth on peanut plants,N;N1 is the support of shovel teeth on peanut plants,N;α0 is oil angle of shovel teeth,(°);α is the angle between the tangent and the horizontal direction of P on the shovel teeth ,(°).
图 6 铲齿入土时刻的几何关系图
注:α1为N点铲齿切线与水平方向的夹角,(°);H1为拨秧齿最小离地间隙,mm;β1为圆弧MN对应的圆心角,(°);β2为直线MN与水平面的夹角,(°);R为铲齿半径,mm。
Figure 6. Geometric relationship diagram at moment of shovel teeth into soil
Note:α1 is the angle between the tangent line of the N-point shovel tooth and the horizontal direction,(°);H1 is the minimum ground clearance of pushing teeth,mm;β1 is the entral angle of arc MN,(°);β2 is the angle between MN and horizontal plane,(°);R is shovel teeth radius,mm.
图 10 推送阶段花生植株受力分析
注:F2为捡拾齿对质点P的作用力,N;Fm为P绕护板转动的向心力,N;N为护板对P的支持力,N;Ff为护板对P的摩擦力,N;ψ为Fm与竖直方向的夹角,(°);δ为捡拾齿与护板夹角,(°);R3为护板半径,mm。
Figure 10. Diagram of peanut plant stress analysis in pushing process
Note:F2 is the force of picking teeth on mass point P,N;Fm is the centripetal force of P rotating around the shield,N;N is the support of the shield for P,N;Ff is the friction force between the shield and P,N;ψ is the angle between Fm and the vertical direction,(°);δ is the angle between picking teeth and shield,(°);R3 is the radius of shield.
图 13 四排拨秧齿与捡拾齿运动轨迹
注:S1、S2分别为λ=1.1时的拨秧齿和捡拾齿节距,mm;S1'、S2'分别为λ=1.3时的拨秧齿和捡拾齿节距,mm。
Figure 13. Motion locus of four rows of pushing teeth and picking teeth with different rows
Note:S1, S2 is the pitch of the pushing teeth and picking teeth when λ=1.1,repectively, mm;S1' , S2' is the pitch of the pushing teeth and picking teeth when λ=1.3,respectively, mm.
表 1 不同排数的拨秧齿与捡拾齿节距
Table 1 Pitch between different rows of pushing teeth and picking teeth
mm 项目Items λ 齿排数Number of teeth rows n 4 5 6 拨秧齿
Pushing teeth1.1 324.7 274.2 228.5 1.3 290.0 232.0 193.3 捡拾齿
Picking teeth1.1 328.4 263.7 219.0 1.3 278.0 222.3 185.3 表 2 试验因素与水平
Table 2 Factors and levels of experiment
水平
Level前进速度
Forward speed A/(m·s−1)捡拾速比
Pickup speed ratio B铲齿半径
Shovel teeth radius C/mm-1 0.9 1.1 450 0 1.2 1.2 500 1 1.5 1.3 550 表 3 试验方案与试验结果
Table 3 Test plan and results
序号
Serial No.A/( m·s−1) B C/mm 捡拾率
Pickup rate J/%落果率
Fruit drop rate L/%1 0.9 1.1 500 99.12 2.52 2 1.5 1.1 500 95.98 3.08 3 0.9 1.3 500 99.87 3.96 4 1.5 1.3 500 99.04 2.14 5 0.9 1.2 450 99.41 3.62 6 1.5 1.2 450 97.74 2.85 7 0.9 1.2 550 99.10 3.21 8 1.5 1.2 550 96.94 2.31 9 1.2 1.1 450 97.35 2.96 10 1.2 1.3 450 99.74 3.74 11 1.2 1.1 550 96.57 2.71 12 1.2 1.3 550 98.38 3.28 13 1.2 1.2 500 99.25 1.73 14 1.2 1.2 500 98.73 1.91 15 1.2 1.2 500 98.57 1.61 16 1.2 1.2 500 98.97 1.82 17 1.2 1.2 500 99.58 1.44 表 4 验证试验数据
Table 4 Verify experimental data
试验号Test number 捡拾率Pickup rate J/% 落果率Pod loss rate L/% 1 99.43 1.95 2 98.96 1.74 3 99.15 1.88 4 99.26 1.78 5 99.30 1.85 平均值
Mean value99.22 1.84 -
[1] 中华人民共和国国家统计局. 中国统计年鉴[M]. 北京:中国统计出版社,2022. [2] United States Department of Agriculture Foreign Agricultural Service. Overview of world peanut production[EB/OL]. (2022-11)[2022-11-24]. https://apps.fas.usda.gov/psdonline/app/index.html#/app/advQuery.
[3] 陈中玉,高连兴,Charles Chen,等. 中美花生收获机械化技术现状与发展分析[J]. 农业机械学报,2017,48(4):1-21. DOI: 10.6041/j.issn.1000-1298.2017.04.001 CHEN Zhongyu, GAO Lianxing, Charles Chen, et al. Analysis on technology status and development of peanut harvest mechanization of China and the United States[J]. Transaction of the Chinese Society for Agricultural Machinery, 2017, 48(4): 1-21. (in Chinese with English abstract) DOI: 10.6041/j.issn.1000-1298.2017.04.001
[4] 关萌,沈永哲,高连兴,等. 花生起挖晾晒后的果柄机械特性[J]. 农业工程学报,2014,30(2):87-93. GUAN Meng, SHEN Yongzhe, GAO Lianxing, et al. Mechanical properties of peanut peg after digging and drying[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(2): 87-93. (in Chinese with English abstract)
[5] 王冰,胡志超,彭宝良,等. 半喂入四行花生联合收获机弹指筛结构运行参数优化[J]. 农业工程学报,2017,33(21):20-28. DOI: 10.11975/j.issn.1002-6819.2017.21.002 WANG Bing, HU Zhichao, PENG Baoliang, et al. Structure operation parameter optimization for elastic steel pole oscillating screen of semi-feeding four rows peanut combine harvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(21): 20-28. (in Chinese with English abstract) DOI: 10.11975/j.issn.1002-6819.2017.21.002
[6] 高连兴,刘维维,王得伟,等. 典型花生收获工艺流程及相关机械术语研究[J]. 花生学报,2014,43(3):26-30. DOI: 10.3969/j.issn.1002-4093.2014.03.007 GAO Lianxing, LIU Weiwei, WANG Dewei, et al. Typical technological processes and machine concepts of peanut harvesting in China[J]. Journal of Peanut Science, 2014, 43(3): 26-30. (in Chinese with English abstract) DOI: 10.3969/j.issn.1002-4093.2014.03.007
[7] 王东伟,尚书旗,赵大军,等. 4HBL-4型二垄四行半喂入自走式花生联合收获机[J]. 农业机械学报,2013,44(10):86-92. DOI: 10.6041/j.issn.1000-1298.2013.10.015 WANG Dongwei, SHANG Shuqi, ZHAO Dajun, et al. Type-4HBL-4 two-ridges and four-lines semi-feeding self-propelled peanut combine harvester[J]. Transaction of the Chinese Society for Agricultural Machinery, 2013, 44(10): 86-92. (in Chinese with English abstract) DOI: 10.6041/j.issn.1000-1298.2013.10.015
[8] 于昭洋,胡志超,曹明珠,等. 切流式花生全喂入联合收获机清选机构设计[J]. 农业工程学报,2019,35(9):29-37. DOI: 10.11975/j.issn.1002-6819.2019.09.004 YU Zhaoyang, HU Zhichao, CAO Mingzhou, et al. Design of cleaning device of tangential flow and whole-feed peanut combine harvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(9): 29-37. (in Chinese with English abstract) DOI: 10.11975/j.issn.1002-6819.2019.09.004
[9] 高连兴,陈中玉,Charles Chen,等. 美国花生收获机械化技术衍变历程及对中国的启示[J]. 农业工程学报,2017,33(12):1-9. GAO Lianxing, CHEN Zhongyu, Charles CHEN, et al. Development course of peanut harvest mechanization technology of the United States and enlightenment to China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(12): 1-9. (in Chinese with English abstract)
[10] 许涛,刘志侠,高连兴,等. 中美花生捡拾技术研究现状与发展分析[J]. 沈阳农业大学学报,2023,54(3):372-384 DOI: 10.3969/j.issn.1000-1700.2023.03.013 XU Tao, LIU Zhixia, GAO Lianxing, et al. Technology research status and development of peanut pickup device of China and the United States[J]. Journal of Shenyang Agricultural University, 2023, 54(3): 372-384. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-1700.2023.03.013
[11] 许涛,沈永哲,高连兴,等. 基于两段收获的弹齿式花生捡拾机构研究[J]. 农业机械学报,2016,47(3):90-97,111. DOI: 10.6041/j.issn.1000-1298.2016.03.013 XU Tao, SHEN Yongzhe, GAO Lianxing, et al. Spring-finger peanut pickup mechanism based on two-stage harvest[J]. Transaction of the Chinese Society for Agricultural Machinery, 2016, 47(3): 90-97,111. (in Chinese with English abstract) DOI: 10.6041/j.issn.1000-1298.2016.03.013
[12] 许涛,高连兴,刘志侠. 一种铲齿-齿滚组合式花生捡拾装置:CN112400477B[P].2022-06-07. [13] 许涛,高连兴,刘志侠. 铲齿-弹齿滚筒组合式花生捡拾装置:CN112400478B[P].2022-06-07. [14] 许涛,高连兴. 一种椭圆行星轮系式弹齿滚筒花生捡拾装置:CN112833141B[P].2023-05-12. [15] 王申莹,胡志超,徐弘博,等. 全喂入式花生捡拾收获机捡拾输送装置研制[J]. 农业工程学报,2019,35(19):20-28. DOI: 10.11975/j.issn.1002-6819.2019.19.003 WANG Shenying, HU Zhichao, XU Hongbo, et al. Design and test of pickup and conveyor device for full-feeding peanut pickup harvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(19): 20-28. (in Chinese with English abstract) DOI: 10.11975/j.issn.1002-6819.2019.19.003
[16] 王伯凯,顾峰玮,于昭洋,等. 轴流式全喂入花生收获机捡拾机构设计与试验[J]. 农业机械学报,2020,51(10):132-141,169. DOI: 10.6041/j.issn.1000-1298.2020.10.015 WANG Bokai, GU Fengwei, YU Zhaoyang, et al. Design and experiment of picking-up mechanism of axial-flow full-feed peanut harvester[J]. Transaction of the Chinese Society for Agricultural Machinery, 2020, 51(10): 132-141,169. (in Chinese with English abstract) DOI: 10.6041/j.issn.1000-1298.2020.10.015
[17] 胥南,王东伟,尚书旗,等. 花生捡拾联合收获机捡拾装置优化设计与运动学分析[J]. 农机化研究,2021,43(12):128-132. DOI: 10.3969/j.issn.1003-188X.2021.12.023 XU Nan, WANG Dongwei, SHANG Shuqi, et al. The optimum design and kinematics analysis of the picking device of peanut combine harvester[J]. Agricultural Mechanization Research, 2021, 43(12): 128-132. (in Chinese with English abstract) DOI: 10.3969/j.issn.1003-188X.2021.12.023
[18] 陈有庆,胡志超,王申莹,等. 割秧后花生收获机捡拾装置设计与试验[J]. 农业工程学报,2020,36(16):1-8. DOI: 10.11975/j.issn.1002-6819.2020.16.001 CHEN Youqing, HU Zhichao, WANG Shenying, et al. Design and experiments of pickup device of peanut harvester after cutting peanut straws[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(16): 1-8. (in Chinese with English abstract) DOI: 10.11975/j.issn.1002-6819.2020.16.001
[19] 高连兴,许涛,沈永哲,等. 一种弹齿滚筒式花生捡拾装置:CN105638068B[P].2018-07-03. [20] 梁港平,高连兴,周泉,等. 一种搂齿式花生捡拾摘果装置:CN216820716U[P].2022-06-28. [21] 高连兴,陆荣,刘明国等. 一种直立锥滚筒式花生脱壳机:CN109984345A[P].2019-07-09. [22] 田连祥,尚书旗,王东伟,等. 4HT-2花生条铺收获机的研制与试验[J]. 农机化研究,2018,40(7):87-91. DOI: 10.3969/j.issn.1003-188X.2018.07.016 TIAN Lianxiang, SHANG Shuqi, WANG Dongwei, et al. Development and experiment of type 4HT -2 peanut harvester[J]. Agricultural Mechanization Research, 2018, 40(7): 87-91. (in Chinese with English abstract) DOI: 10.3969/j.issn.1003-188X.2018.07.016
[23] 王东伟,尚书旗,韩坤. 4HJL-2型花生捡拾摘果联合收获机的设计与试验[J]. 农业工程学报,2013,29(11):27-36,294. WANG Dongwei, SHANG Shuqi, HAN Kun. Design and test of 4HJL-2 harvester for peanut picking-up and fruit-picking[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(11): 27-36,294. (in Chinese with English abstract)
[24] 王伯凯,胡志超,曹明珠,等. 轴流式花生捡拾收获机设计与试验[J]. 农业机械学报,2021,52(1):109-118,98. WANG Bokai, HU Zhichao, CAO Mingzhu, et al. Design and test of axial-flow peanut picking and harvesting machine[J]. Transaction of the Chinese Society for Agricultural Machinery, 2021, 52(1): 109-118,98. (in Chinese with English abstract)
[25] 王文明,王春光. 弹齿滚筒式捡拾装置参数分析与仿真[J]. 农业机械学报,2012,43(10):82-89. DOI: 10.6041/j.issn.1000-1298.2012.10.015 WANG Wenming, WANG Chunguang. Parameter analysis and simulation of spring-finger cylinder pickup collector[J]. Transaction of the Chinese Society for Agricultural Machinery, 2012, 43(10): 82-89. (in Chinese with English abstract) DOI: 10.6041/j.issn.1000-1298.2012.10.015
[26] 乌吉斯古楞,刘伟峰,包那日那. 滚筒式捡拾器的运动仿真[J]. 农机化研究,2010,32(9):50-53. Wujisiguleng, LIU Weifeng, Baonarina. Simulation of spring-teeth pick-up[J]. Agricultural Mechanization Research. 2010, 32(9): 50-53. (in Chinese with English abstract)
[27] 王国权,余群,卜云龙,等. 秸秆捡拾打捆机设计及捡拾器的动力学仿真[J]. 农业机械学报,2001,32(5):59-61,68. DOI: 10.3969/j.issn.1000-1298.2001.05.019 WANG Guoquan, YU Qun, BU Yunlong, et al. Design of pickup baler and dynamic simulation of pickup roller[J]. Transaction of the Chinese Society for Agricultural Machinery, 2001, 32(5): 59-61,68. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-1298.2001.05.019
[28] 中华人民共和国农业部. 花生收获机械 作业质量:NY/T 502—2016[S]. 北京:中国标准出版社,2016. [29] 中华人民共和国农业部. 花生收获机械 质量评价技术规范:NY/T 2204—2012[S]. 北京:中共农业出版社,2013. [30] 潘丽军,陈锦权. 试验设计与数据处理[M]. 南京:东南大学出版社,2008. [31] 王永菲,王成国. 响应面法的理论与应用[J]. 中央民族大学学报(自然科学版),2005(3):236-240. DOI: 10.3969/j.issn.1005-8036.2005.03.008 WANG Yongfei, WANG Chenguo. The application of response surface methodology[J]. Journal of the CUN(Natural Sciences Edition), 2005(3): 236-240. (in Chinese with English abstract) DOI: 10.3969/j.issn.1005-8036.2005.03.008
-
期刊类型引用(1)
1. 刘星星,车金宁,杨潇,胡太华,田文斌,郑永军. 枸杞株间电驱动避障除草机设计与试验. 农业工程学报. 2024(23): 104-114 . 本站查看
其他类型引用(0)