Stress Analysis and Crack Prediction of Microwave Vacuum Drying of Wheat
-
摘要:
针对微波真空干燥过程中小麦易产生应力裂纹从而影响品质的问题,该研究采用质构分析仪进行了小麦的压缩试验,结合广义Maxwell模型建立了小麦的应力模型,确定了小麦的应力松弛及干燥后小麦承载能力随变形量的变化规律,获得了有效水分扩散系数并研究了活化能对其影响,分析了干燥过程中小麦的含水率、温度、爆腰率和应力之间的关系。结果表明:干燥温度在50~70 ℃之间时,干燥后小麦颗粒的裂纹数量显著增加,承载能力大幅下降,容易在储藏过程发生破裂。此外,温度的升高加速了小麦内部水分传输,但同时也破坏了小麦的内部结构,导致干燥裂纹的产生。裂纹的产生总体上加快了水分的传输速率,但也存在传输速率降低的可能。活化能反映水分传输的难易程度,结合有效水分扩散系数可知,它们之间的关系反映了水分扩散过程中的能量需求和效率之间的平衡。温度和湿基含水率对小麦所受应力的影响程度不同,当湿基含水率低于14%时,应力随温度的升高呈现先增加后减少的趋势,而在湿基含水率高于14%的范围内,随着温度的增加应力呈现先减少后增加的趋势。当应力超过小麦颗粒的强度极限时,会导致裂纹形成,并进一步降低小麦颗粒的强度极限。为了控制小麦的爆腰率和减少裂纹数量,提出了最佳干燥工艺为:将常温下的小麦以2.86 ℃/min的温度上升速率干燥至40 ℃,温度到达40 ℃后恒温干燥7 min,然后将温度上升速率调整到1.63 ℃/min,温度到达61.4 ℃后结束干燥,此工艺不仅降低了干燥小麦的爆腰率,还可以预测爆腰小麦的裂纹数量,为微波真空干燥小麦工艺提供了理论和试验基础。
-
关键词:
- 微波真空干燥 /
- 爆腰 /
- 应力裂纹 /
- 广义Maxwell模型
Abstract:Drying is a crucial step in the post-harvest processing of crops, aimed at reducing the moisture content and extending the shelf life of agricultural products by lowering the water activity to levels that inhibit microbial growth, enzyme reactions, and other deterioration reactions. Wheat drying research aims to shorten processing time, reduce costs, improve drying product quality, and enhance drying efficiency. Commonly used wheat drying techniques include hot air drying, microwave drying, natural drying, freeze drying, and vacuum drying. Microwave vacuum drying combines the rapid and efficient drying of microwave drying with the low-temperature characteristics of vacuum drying, effectively addressing the trade-off between wheat quality and economic benefits. During the microwave vacuum drying process, wheat experiences drying stress due to temperature and moisture gradients. When the drying stress exceeds the wheat's strength limit, cracks and kernel bursting occur, resulting in a decrease in the grade of dried wheat. To address the issue of stress cracking in wheat during microwave vacuum drying, a digital image measurement system-based texture analyzer was used to conduct 30 repeated compression tests on wheat samples. A stress model for wheat was established based on the generalized Maxwell model. The stress relaxation behavior, stress variation with deformation, and effective moisture diffusivity were determined. The influence of activation energy on effective moisture diffusion was also investigated. Aiming at the problem that wheat is prone to stress cracks during microwave vacuum drying and thus affects the quality, the study conducted a compression test of grain by using a texture analyzer, established a stress model of wheat by combining it with the generalized Maxwell model, determined the stress relaxation of grain and the change rule of the load-bearing capacity of wheat after drying with the deformation amount, obtained the effective moisture diffusion coefficient, and investigated the effect of the activation energy on it. The relationship between moisture content, temperature, bursting waist rate, and stress of wheat in the drying process was analyzed. The results showed that when the drying temperature was between 50 and 70 ℃, the number of cracks in the dried wheat grains increased significantly, the carrying capacity decreased substantially, and rupture occurred easily in the storage process. Moreover, higher temperatures accelerated internal moisture transfer in wheat but also disrupted the internal structure, resulting in the formation of drying cracks. The formation of cracks generally speeds up the water transfer rate, but there is also the possibility of decreasing the transfer rate. Activation energy reflects the difficulty of water transport, and combined with the effective water diffusion coefficient, the relationship between them reflects the balance between energy demand and efficiency in the water diffusion process. The impact of temperature and moisture content on the stress experienced by wheat varied. When the moisture content was below 14% (wet basis), the stress initially increased and then decreased with temperature. However, within the moisture content range above 14%, the stress exhibited a decreasing trend followed by an increasing trend as temperature increased. Exceeding the strength limit of wheat particles resulted in crack formation, further reducing the strength limit of wheat grains. To control the kernel bursting rate and minimize the number of cracks in wheat, an optimized drying process was proposed. The process involved drying wheat from ambient temperature to 40 ℃ at a heating rate of 2.86 ℃/min, maintaining a constant temperature of 40 ℃ for 7 min, and then adjusting the heating rate to 1.63 ℃/min until reaching 61.4 ℃, at which point the drying process was concluded. This optimized process not only reduced the kernel bursting rate during wheat drying but also allowed for the prediction of the number of cracks in burst wheat, providing a theoretical and experimental foundation for microwave vacuum drying of wheat.
-
Keywords:
- microwave vacuum drying /
- burst waist /
- stress cracks /
- generalized Maxwell model
-
0. 引 言
干燥是作物收获后加工过程中一个非常重要的环节,其目的是降低农产品收获后的含水量,延长生物来源产品的保质期,将水的活性降低到足以抑制微生物生长、酶反应和其他变质反应的水平[1-3]。小麦是我国主要粮食作物之一,2023年我国小麦总产量为
2731.8 亿斤。小麦干燥研究的目标是缩短加工时间,降低加工成本,提高干燥产品质量和干燥效率。目前常使用的干燥技术有热风干燥、微波干燥、自然干燥、冷冻干燥和真空干燥等[4]。热风干燥应用广泛,且成本低,但干燥后物料品质难以保证[5]。冷冻干燥可较好地保护干燥过程中物料品质,但其成本较高[6]。微波干燥通过水分子选择性地吸收电磁能量,在材料内部产生热量,产生湿度传递,可缩短干燥时间,而不会使产品质量下降,但加热不均匀现象是微波干燥中不可忽略的问题[7-9]。真空干燥的温度较低,对小麦的品质有一定的保证。复合干燥方法的研究受到人们的高度重视,可增加干燥驱动力,减少干燥时间和能耗,得到高质量的产品。微波真空干燥技术将微波干燥的快速高效和真空干燥的低温特性结合,较好解决了物料品质和经济效益之间的矛盾[10-11]。在微波真空干燥过程中,在温度梯度和水分梯度作用下小麦内部会产生干燥应力,当干燥应力超过小麦强度极限时,会产生裂纹,造成爆腰,降低小麦干燥后的品质等级[12-15]。研究发现在干燥温度、空气流速、停留时间和谷物含水率对某些机械、化学和生物特性影响的因素中,影响最大的因素是谷物含水率和干燥温度[16]。因此干燥小麦的质量取决于干燥条件,如干燥温度、干燥时间以及初始和最终含水率[17]。可通过准静态压缩、冲击、破坏试验以及压缩——挤压试验测量农产品的机械性能[18-19]。此外,单轴压缩试验是使用材料试验机估计晶体性能的常用方法[17]。在对农产品的研究中,发现高水分条件下的变性能和破裂能大于低水分条件下的变性能和破裂能[20]。
小麦在干燥后储藏环境由于储藏条件及麦堆压力会对小麦进行二次破坏[21]。因此,降低小麦干燥过程爆腰率及提高干燥后承载力是微波真空干燥研究的关键问题,本文研究小麦在微波真空干燥过程中内部的温度梯度、水分梯度和应力值以及干燥后小麦的抗压能力,分析工艺条件对小麦爆腰率和品质以及干燥后仓储的影响,以期为小麦干燥工艺的发展提供参考。
1. 材料与方法
试验材料选用山东产的颗粒饱满、表面光滑、无裂纹的济麦22,将湿基含水率调配到20%[22],后于常温状态下的水浴锅密封保存。本文将小麦视为黏弹性体,所建模型考虑了水分、温度、应变和应力等因素,应力方程包括径向应力、应力平衡和主应力,样品的应力应变关系由广义Maxwell模型描述。
1.1 应力解析方程
1.1.1 广义Maxwell模型
黏弹性体中,黏弹性质主要表现为材料的应力和应变率。两种最基本的黏弹性体模型是麦克斯韦模型和开尔文模型。因广义Maxwell黏弹物理模型能够准确地解释和描述黏弹性材料的应力应变本构关系,所以在数值分析中采用广义Maxwell模型。
广义Maxwell模型可以直观地反映出材料的应力松弛规律,如果对广义Maxwell原件施加一固定应变,其本构方程表达式为[23]:
$$ \sigma \left( t \right) = \int_0^t {2{G_1}(t)\frac{\partial }{{{\partial _\tau }}}} e(\tau ){\text{d}}\tau $$ (1) 式中$t$为时间,s;$ \sigma \left( t \right) $为随时间变化的应力,Pa;${G_1}(t)$为松弛函数,${{{\text{Pa}}} \mathord{\left/ {\vphantom {{{\text{Pa}}} {\text{s}}}} \right. } {\text{s}}}$;$ e(\tau ) $为随松弛时间变化的应变;$ \tau $为松弛时间,s。
在黏弹性材料的本构方程中剪切松弛模量是材料的重要黏弹属性参数,Maxwell剪切松弛模量表达式是一组松弛时间离散分布的指数加权的和[24]。食物黏弹性行为的弛豫时间分布函数是通过对均值为0的两个正态分布函数求和而获得的。要得到某种材料的剪切松弛模量表达式必须得到该材料的松弛时间分布以及相应的加权系数,这些参数被称为Maxwell模型参数。此参数很难从试验或经验中直接获得,从各种不同材料的黏弹松弛试验数据中研究发现,大多数材料的应力松弛模量可以用经验公式(KWW函数[25])表达。
广义模型的剪切松弛模量函数可表达为[26]:
$$ {G_1}(t) = {G_0}\exp \left[ { - {{\left( {\frac{t}{\tau }} \right)}^\beta }} \right] $$ (2) 式中${G_{\text{0}}}$为初始剪切模量,Pa;$ \beta $为指数扩展因子。
1.1.2 无量纲化
在干燥过程中,小麦内部水分和温度也是变量,所以引入无量纲时间-温度转换因子$ {\alpha _T} $和时间-水分转换因子$ {\alpha _M} $ [27-28]:
$$ {\alpha _T} = \frac{t}{{{\vartheta _T}}};{\alpha _M} = \frac{t}{{{\vartheta _M}}} $$ (3) 式中$ {\vartheta _T} $为温度折算时间,s;$ {\vartheta _M} $为水分折算时间,s。
$$ \left\{ \begin{aligned} & {{\vartheta _T} = t\exp \left[ {\left( {{{{E_a}} \mathord{\left/ {\vphantom {{{E_a}} R}} \right. } R}} \right) \cdot \left( {{1 \mathord{\left/ {\vphantom {1 T}} \right. } T} - {1 \mathord{\left/ {\vphantom {1 {{T_{\text{0}}}}}} \right. } {{T_{\text{0}}}}}} \right)} \right]} \\ & {{M_{{\text{cf}}}} = 1 - \frac{M}{{100}}} \\ & {{\vartheta _M} = t \cdot {M_{{\text{cf}}}}} \end{aligned} \right. $$ (4) 式中$ {E_a} $为小麦活化能,kJ/mol;$ R $为气体常数,8.314 J /(mol﹒K);$T$为小麦干燥的绝对温度,K;$ {T_{\text{0}}} $为小麦初始温度,K;$ {M_{{\text{cf}}}} $为水分折算因子。
进一步,将总的转换因子$\alpha $定义为:
$$ \alpha = {\alpha _T}{\alpha _M} = \frac{t}{\vartheta } $$ (5) 式中$\vartheta $为总折算时间,s。
1.1.3 径向偏应力方程
根据Mukimder S 的研究,小麦偏应力方程为[29]:
$$ {S_{kl}}(t) = \int_0^t {G\left( {t - t{'}} \right)} \frac{\partial }{{\partial t{'}}}{e_{kl}}\left( t \right)dt{'} $$ (6) 式中应力与应变采用双下标表示,第一个下标$k$对应小麦切面的法线方向,第二个下标$l$表示主应力方向,$ t{'} $为时间,$ {e_{kl}} $为偏应变,Pa。
在引入转换因子后,偏应力公式转换为[30]:
$$ \begin{split} {S_{rr}}\left( t \right) = \,&\frac{{{T_{\text{0}}}{M_{\text{0}}}}}{{{T_{\text{f}}}M\left( t \right)}} \cdot \\ \,&\int_0^t {{G_0}} \left[ {\vartheta \left( t \right) - \vartheta \left( {t{'}} \right)} \right]\frac{\partial }{{\partial t{'}}}{e_{rr}}\left( {t{'}} \right)dt{'} \end{split} $$ (7) 式中$ {S_{{\text{rr}}}} $为径向偏应力,Pa;${T_{\text{0}}}$为初始温度,K;${M_{\text{0}}}$为初始湿基含水率,g/g;${T_{\text{f}}}$为试验温度,K;$M\left( t \right)$为随时间变化的湿基含水率,g/g;$ {e_{{\text{rr}}}} $为径向应变。
根据Mukimder S 的研究,偏应变[29]为:
$$ {e_{{\text{rr}}}}^e\left( t \right) = \frac{{2\left( {1 + v} \right){\alpha _{\text{ω }}}}}{{3\left( {1 - v} \right)}}M\left( t \right) $$ (8) 式中$ v $和${\alpha _{\text{ω }}}$分别为小麦的泊松比和线性吸湿膨胀系数,均为定值。
将公式(8)代入公式(7),得到径向偏应力的公式:
$$ \begin{split} {S_{rr}}\left( t \right) =\,& \frac{\alpha }{{M\left( t \right)}}\int_0^t {{G_0}} \cdot \\ \,&\left[ {\vartheta \left( t \right) - \vartheta \left( {t{'}} \right)} \right]\left[ {\frac{{\partial M\left( t \right)}}{{\partial t}} - \frac{{\partial M\left( {t{'}} \right)}}{{\partial t{'}}}} \right]dt{'} \end{split} $$ (9) 1.1.4 应力平衡方程
在不考虑小麦本身惯性力时,根据应力平衡理论,其应力平衡方程为[31]:
$$ \left\{ \begin{gathered} {\sigma _x} = \frac{E}{{(1 - v)}} \cdot [{\varepsilon _x} - v \cdot ({\varepsilon _y} + {\varepsilon _z})] \\ {\sigma _y} = \frac{E}{{(1 - v)}} \cdot [{\varepsilon _y} - v \cdot ({\varepsilon _x} + {\varepsilon _z})] \\ {\sigma _z} = \frac{E}{{(1 - v)}} \cdot [{\varepsilon _z} - v \cdot ({\varepsilon _x} + {\varepsilon _y})] \\ \end{gathered} \right. $$ (10) 式中$ {\sigma _x} $、$ {\sigma _y} $和$ {\sigma _z} $分别为小麦中轴、长轴和短轴方向的应力,MPa;$E$为弹性模量,MPa;$ {\varepsilon _x} $、$ {\varepsilon _y} $和$ {\varepsilon _z} $分别为小麦中轴、长轴和短轴方向的应变。
1.1.5 主应力方程
在弹性力学理论中,偏应变和偏应力的关系表达式为[32]:
$$ \left\{ \begin{gathered} {S_{rr}} = - 2{S_{\theta \theta }} = - 2{S_{\varphi \varphi }} = \frac{2}{3}\left( {{\sigma _{rr}} - {\sigma _{\theta \theta }}} \right) \\ {S_{r\theta }} = {S_{\theta \varphi }} = {S_{\varphi r}} = 0 \\ {e_{rr}} = - 2{e_{\theta \theta }} = - 2{e_{\varphi \varphi }} = \frac{2}{3}\left( {{\varepsilon _{rr}} - {\varepsilon _{\theta \theta }}} \right) \\ {e_{r\theta }} = {e_{\theta \varphi }} = {e_{\varphi r}} = 0 \\ \end{gathered} \right. $$ (11) 式中$S$为偏应力,Pa;$e$为偏应变;$ \sigma $为主应力,Pa;$ \varepsilon $为主应变;应力和应变下标中$ r $对应径向方向,$ \theta $对应切线方向,$ \varphi $对应法线方向。
将径向主应力$ {\sigma _{rr}}(t) $代入公式(11),得到切向主应力:
$$ {\sigma _{\theta \theta }}\left( t \right) = {\sigma _{rr}}(t) - \frac{3}{2}{S_{rr}}\left( t \right) $$ (12) 1.2 主要特征系数
1)对于谷物膨胀系数的测定研究鲜有人报道,本文参考华云龙[33]等的部分试验结果,其中:$\beta = 0.434$。
2)线膨胀系数与泊松比[20]为:${\alpha _\omega } = 0.390$;$v = 0.4$。
3)加权系数[25]为:${\omega _i}{\text{ = }}\frac{{{G_{\text{i}}}}}{{{G_{\text{0}}}}}{\text{ = 0}}{\text{.1}}$。
4)转换因子$\alpha \left( M \right)$和折算时间$ \vartheta \left( {t,M} \right) $ [29]:
$$ \alpha \left( M \right){\text{ = 2}}{\text{.28}} \times {\text{1}}{{\text{0}}^3}{\text{exp}}\left[ {{\text{ - }}\left( {{\text{0}}{\text{.02}}{T_{\text{f}}}{\text{ + 11}}M} \right)} \right] $$ (13) $$ \vartheta \left( {t,M} \right) = 4.39 \times {10^{ - 4}}\exp \left[ {\left( {0.02{T_{\text{f}}} + 11M} \right)t} \right] $$ (14) 1.3 试验设备
干燥试验设备包括:型号RWBZ-08S、工作尺寸320 mm×340 mm×250 mm的微波真空干燥箱,南京苏恩瑞干燥设备有限公司;型号HC5003X、精度±0.1 mg的电子天平,上海花潮实业有限公司,用于测量小麦质量;放大镜,用于查看小麦的裂纹;型号Fluke 59的红外电子测温仪,Fluke Corporation,用于测量小麦的温度;型号CT3的质构分析仪,Brookfield Engineering Labs. Inc.,用于小麦的压缩试验;型号MDC-25SX的螺旋测微器,三丰精密量仪(上海)有限公司,用于测量小麦尺寸。
1.4 试验方法
1.4.1 微波真空干燥试验
使用前,将干燥箱预热1 h左右,使干燥箱内部环境趋于稳定状态。预热后,将初始含水率为20%的500 g小麦均匀铺在托盘上,根据试验要求预设干燥箱上限温度,进行微波真空干燥试验,其中真空度为0.06 MPa,微波功率为100 W。用电子天平和红外测温仪分别测出每组时间段小麦质量和温度。具体干燥流程如图1所示。
图 1 干燥试验流程图1. 循环冷却水泵 2. 水循环 3. 计算机 4. 电子天平 5. 红外电子测温仪 6. 物料 7. 微波腔 8. 空气循环 9. 微波源 10. 真空泵Figure 1. Flow chart of drying experiment1. Circulation cooling pump 2. Water cycle 3. Computer 4. Electronic balance 5. Infrared electronic thermometer 6. Materials 7. Microwave chamber 8. Air cycle 9. Microwave source 10. Vacuum pump小麦的湿基含水率到12.5%左右时结束干燥。具体试验因素水平如表1。
表 1 试验因素水平表Table 1. Factors and levels of experiment水平level 干燥时间
Drying time/(min)试验温度Experimental temperature/(℃) 1 7 30 2 14 50 3 21 70 从干燥后的小麦中随机取出300粒,等数量的分成3组,在放大镜下观察小麦的裂纹数量和爆腰率。按照试验因素水平表进行3组试验。
1.4.2 压缩试验
用螺旋测微器测定小麦籽粒的三轴长度,对${\text{Z}}$轴进行压缩。由式(15)计算出小麦籽粒与两压力平面接触部分的曲率半径$R$、$R{'}$[34]。
$$ \left\{ \begin{gathered} R = \left[ {{{\left( {X{\text{/2}}} \right)}^{\text{2}}}{\text{ + }}{{\left( {Z{\text{/2}}} \right)}^{\text{2}}}} \right]{\text{/Z}} \\ R{'} = \left[ {{{\left( {Y{\text{/2}}} \right)}^{\text{2}}}{\text{ + }}{{\left( {Z{\text{/2}}} \right)}^{\text{2}}}} \right]{\text{/Z}} \\ \end{gathered} \right. $$ (15) 式中$R$、$R{'}$为小麦籽粒上、下曲率半径,m。
按照ASAE S368. 4DEC2000(R2006)标准,将试验数据代入式(16),计算小麦籽粒的弹性模量E[34]。
$$ E{\text{ = }}\frac{{{\text{0}}{\text{.338}}F{{{\text{(1 - }}\nu {\text{)}}}^{\text{2}}}}}{{{D^{{\text{3/2}}}}}}{\left[ {{\text{2}}K{{{\text{(1/}}R{\text{ + 1/}}R{'}{\text{)}}}^{{\text{1/3}}}}} \right]^{{\text{3/2}}}} $$ (16) 式中$F$为加载载荷,N;$D$为变形量,m;$K$为中间参数。
小麦为椭圆形谷物,在压缩过程中小麦与压力板接触面半长轴$ c $和半短轴$ d $的计算公式为[34]:
$$ c = m{\left[ {\frac{{{\text{3}}{F_R}{{{{(1 - }}\nu {\text{)}}}^{\text{2}}}}}{{{\text{2}}E}}{{\left(\frac{{\text{1}}}{R}{\text{ + }}\frac{{\text{1}}}{{R{'}}}\right)}^{{{ - 1}}}}} \right]^{{\text{1/3}}}} $$ (17) $$ d{\text{ = }}n{\left[ {\frac{{{\text{3}}{F_R}{{{{(1 - }}\nu {\text{)}}}^{\text{2}}}}}{{{\text{2}}E}}{{\left(\frac{{\text{1}}}{R}{\text{ + }}\frac{{\text{1}}}{{R{'}}}\right)}^{{{ - 1}}}}} \right]^{{\text{1/3}}}} $$ (18) 式中$ {F_R} $为任一点曲率半径处的压力,N,$ m $为Y轴方向的尺寸,m,$ n $为Z轴方向的尺寸,m。
将试验测出的样品压缩负荷与变形量数据代入式(17)和(18),根据应力计算公式求出压缩过程中小麦所受的应力。
利于基于数字图像测量系统的质构分析仪进行小麦压缩试验,选取TA3/100型压缩探头、TA-RT-KIT型压缩底座。按照ASAE S368. 4DEC2000(R2006)[35]标准,对微波干燥后的小麦样品进行30次重复压缩试验。长轴、中轴、短轴如图2所示。具体试验方案如表2。
表 2 压缩试验方案Table 2. Compression experiment scheme小麦短轴Z Wheat brachyaxis/mm 小麦中轴X Wheat axis/mm 小麦长轴Y Major axis of wheat/mm 压缩速率 Compression rate mm/s 压缩目标Compressed target 触发力 Triggering force /N 3.39±0.16 3.88±0.22 7.16±0.19 0.02 mm/s 50% 0.098N 根据试验测出的30个样品的压缩负荷与变形量数据,绘出压缩负荷与压缩变形量的关系曲线。曲线最高点对应的负荷是压缩破坏负荷,此点对应的横坐标数值是压缩破坏变形量。小麦籽粒破坏变形量与原长的比值为破坏应变,压缩破坏变形量之前的压缩作用力与变形量曲线与横轴之间的面积是压缩破坏能[36-37]。
将试验平均分为6组,以一组为单位取每组内平均值作为数据,确定压缩变形量与负荷关系。每组数据曲线在负荷降低而变形量发生较大变化的点为小麦在压缩过程中的破裂点[38]。
1.4.3 裂纹分类
将试验后的小麦放在明亮的观察台,用放大镜观察小麦的裂纹情况。根据从籽粒外部观察到的裂纹数量,将小麦的裂纹分为单裂(1条裂纹)、双裂(2条裂纹)和龟裂(3条及3条以上裂纹)3种类型[39-40]。
1.4.4 水分扩散系数计算
水分扩散系数是小麦微波干燥过程中重要的物性参数,决定着小麦内部水分向表面迁移的速率。估算水分扩散系数可以预测物料干燥速度和内部水分的分布,对优化物料的干燥过程、提高物料干燥质量具有重要意义。
有效水分扩散系数与含水率和时间的关系式为[41]:
$$ \ln \left( {\frac{M}{{{M_{\text{0}}}}}} \right) = \ln \left( {\frac{8}{{{\pi ^2}}}} \right) - \left( {\frac{{{\pi ^2}{D_{{\text{eff}}}}t}}{{{L^2}}}} \right) $$ (19) 式中${D_{e{\text{ff}}}}$为有效水分扩散系数,${{{{\text{m}}^{\text{2}}}} \mathord{\left/ {\vphantom {{{{\text{m}}^{\text{2}}}} {\text{s}}}} \right. } {\text{s}}}$;$L$为小麦短轴、中轴和长轴的平均值,m。
1.4.5 活化能计算
干燥活化能${E_a}$的计算公式为[42]:
$$ {E_a}{\text{ = ln}}\frac{{{D_{\text{0}}}}}{{{D_{{\text{eff}}}}}}RT $$ (20) 式中${D_0}$为小麦扩散基数,${{{{\text{m}}^{\text{2}}}} \mathord{\left/ {\vphantom {{{{\text{m}}^{\text{2}}}} {\text{s}}}} \right. } {\text{s}}}$。
实际的小麦的微波干燥活化能不是由式(19)直接得出,而是将式(18)转化为:
$$ \ln {D_{{\text{eff}}}}{\text{ = ln}}{D_0}{{ - }}\frac{{{E_a}}}{R} \cdot \frac{1}{T} $$ (21) 1.4.6 应力方程
根据主应力方程中应力与水分的关系,设应力方程为[39]:
$$ P{\text{ = }}aM{\text{ + }}b $$ (22) 式中$ P $为小麦所受的径向应力,MPa;$ a $、$ b $为与干燥温度T相关的系数。
1.5 试验数据处理方法
采用Origin 2018和MATLAB 2020 软件进行数据采集及处理。
2. 结果与分析
2.1 裂纹分析
根据表3的试验结果,在干燥时间从7 min增加至14 min时,单裂纹率变化不明显,而双裂纹率和龟裂率快速增加;当干燥时间增加至21 min时,单裂纹率呈现明显的下降趋势,双裂纹率上升趋势减缓,而龟裂率上升速度加快。这表明单裂纹率受干燥时间和温度的影响不显著,而干燥时间和温度的变化对双裂纹率和龟裂率影响较大。
表 3 微波真空干燥试验结果Table 3. Experimental results序号
Serial number时间
Time/(min)温度
Temperature/℃湿基含水率
Wet base moisture content/%单裂纹率
Single crack rate/%双裂纹率
Double crack rate/%龟裂率
Multiple crack rate/%物料温度
Material temperature/℃1 7 30 16.9 2.1 0.6 0.3 28.1 2 14 50 14 2.2 2.1 0.7 47.6 3 21 70 11.44 1.7 3.2 4.1 67.1 2.2 干燥温度对小麦干燥后承载能力影响分析
根据图3的结果,对于微波干燥后温度在30~70 ℃的小麦,在质构仪进行压缩的过程中,当压缩变形量在0.56~0.91 mm之间时,所受负荷呈现下降趋势,且这种下降趋势在温度不大于50 ℃的小麦中持续的更久。一方面因为小麦在受到质构仪的挤压时,在此变形区间内产生了初始裂纹,使小麦所受负荷下降。另一方面因为微波真空干燥后小麦特性产生了变化,低温的小麦含水率高,其脆性要低于含水率低的高温小麦,可承受的变形增量更大。随着持续的压缩过程,当压缩变形量在1.02~1.2 mm之间时,小麦发生了第二次破裂,且第二次破裂所产生的变形增量明显大于第一次破裂。这是由于产生裂纹后的小麦在应力集中和破坏机制的作用下,加剧了裂纹的扩展,使小麦变形增量有了明显的提升。第二道裂纹产生后,小麦表面的负荷将不断增加,直至负荷达到质构仪探头所能承受的负荷范围的上限。在这个过程中,小麦将进入龟裂状态。温度范围位于50~70 ℃之间时,较小的变形量就会产生裂纹,随着小麦颗粒的裂纹数量的增加,其承载能力大幅度下降,这种下降的承载能力会使小麦颗粒容易发生更严重的破裂。
从保证干燥后小麦品质及减少能耗角度考虑,小麦干燥温度宜选择60~70 ℃[43-44],在60 ℃和70 ℃下不同裂纹所需的负荷和变形量如表4所示。
表 4 不同裂纹点对应的负荷与变形量Table 4. Load and deformation corresponding to different crack locations温度Temperature℃ 裂纹状态
Cracked state负荷Load(g) 变形量Deflection(mm) 60 单裂纹 6906 0.62 双裂纹 10988 1.06 龟裂 9735 1.13 70 单裂纹 7283 0.55 双裂纹 11881 1.02 龟裂 11762 1.08 经过压缩后,将小麦的尺寸代入式(6)和(7),得到以下结果:
对于单裂纹的情况,小麦的应力范围为471~559.9 MPa,变形量的区间为0.55~0.62 mm;对于双裂纹的情况,小麦的应力范围为438.3~492.6 MPa,变形量的区间为1.02~1.06 mm;对于龟裂的情况,小麦的应力范围为364.3~460.5 MPa,变形量的区间为1.08~1.13 mm。
2.3 有效水分扩散系数与活化能分析
通过将表3中的微波真空干燥试验结果代入式(19),可以得出小麦有效水分扩散系数与时间的关系。根据图4的结果显示,小麦的有效水分扩散系数随着时间的增加而增长,增长速率呈现出先降低后平稳的趋势,且随着有效水分扩散系数的增加,其误差范围明显增大。因为温度的升高提高了小麦内部水分的传输速度,从而促进传质过程[45]。然而,当小麦内部孔隙中的水分增加时,水分分子在已经充满水分的孔隙中的移动受到限制,无法进一步加快扩散速率。只有当小麦产生裂纹时,才能进一步加快有效水分扩散系数的增长。有效水分扩散系数误差范围的扩大反映了裂纹对小麦内部水分传输的影响存在不确定性,裂纹的持续扩展总体上加快了水分的传输,有效水分扩散系数扩大的误差范围也证明了水分传输速率存在降低的可能。图中在第840、
1050 和1260 s时,小麦的有效水分扩散系数分别为1.592×10−10、2.074×10−10和2.523×10−10 m2/s,此三点对应的干燥温度分别为50、60和70 ℃。通过将50、60和70 ℃代入式(21),可以得出活化能和有效水分扩散系数之间的函数关系,可以确定小麦的活化能范围在315.94~
1011.59 kJ/mol。活化能数值存在巨大差异,反映了微波真空干燥过程中存在某些因素,影响了水分传输的难易程度,结合对水分扩散系数的分析,得出干燥过程中裂纹的产生和扩展影响了水分传输的快慢和难易程度。活化能直接影响有效水分扩散系数,较高的活化能意味着水分分子在小麦内部的扩散过程更加困难,需要更多的能量来推动水分分子的移动。因此,较大的活化能通常与较小的有效水分扩散系数相关联,这种关系反映了水分扩散过程的能量要求和效率之间的权衡。2.4 干燥过程中应力与温度和含水率的关系
根据表3中的数据和式(9),得出不同裂纹下系数a、b与干燥温度T之间的关系,如表5所示。
表 5 小麦产生裂纹时,系数a、b与干燥温度T之间的关系Table 5. Relationship between coefficient a, b and drying temperature T when cracks occur in wheat干燥温度T/℃ 单裂纹 双裂纹 龟裂纹 $ {a_1} $ $ {b_1} $ $ {a_2} $ $ {b_2} $ $ {a_3} $ $ {b_3} $ 30 −61.3 1246.2 −53.8 1150.9 −34.9 814.1 50 −70.7 1268.7 −109.3 1958.5 −29.3 761.1 70 −29.4 664.3 −47.8 1076.8 −15.2 677.7 对表5中的数据进行回归分析,得出不同裂纹下系数a、b与干燥温度T的回归方程,如表6所示。
表 6 系数a、b与干燥温度T的回归方程Table 6. The regression equations of coefficients a and b with drying temperature T裂纹数 $ a $与干燥温度T之间的回归方程 $ b $与干燥温度T之间的回归方程 单裂纹 $ {a_1} = 0.06{T^2} - 5.54T{\text{ + }}47.84 $ $ {b_1} = - 0.78{T^2}{\text{ + }}63.53T + 39.2 $ 双裂纹 $ {a_2} = - 0.15{T^2} - 14.48T{\text{ + }}248.83 $ $ {b_2} = - 2.11{T^2}{\text{ + }}209.31T - 3229.4 $ 龟裂 $ {a_3} = 0.011{T^2} - 0.57T - 29.2 $ $ {b_3} = - 0.038{T^2}{\text{ + }}0.39T + 836.6 $ 将表6中的回归方程代入式(22),得到应力P与温度、含水率之间的关系式:
$$ \left\{ \begin{aligned} & {P_{\text{1}}} = (0.06{T^2} - 5.54T{\text{ + }}47.84)M - 0.78{T^2}{\text{ + }}\\ & \quad63.53T + 39.2 \\ & {P_{\text{2}}} = (0.15{T^2} - 14.48T{\text{ + }}248.83)M - 2.11{T^2}{\text{ + }}\\ & \quad209.31T - 3229.4 \\ & {P_{\text{3}}} = (0.011{T^2} - 0.57T - 29.2)M - 0.038{T^2}{\text{ + }}0.39T +\\ &\quad 836.6 \end{aligned} \right. $$ (23) 图5a、b、c展示了在单裂、双裂和龟裂情况下,不同温度和含水率对小麦所受应力的影响。在试验中,将温度范围设定在30~70 ℃之间,并且含水率的变化范围为10%~20%之间。根据图5a、b、c的结果,在相同湿基含水率条件下,随着温度的均匀增加,小麦达到单裂纹点所需的应力呈现逐渐增加的趋势,而小麦出现龟裂所需的应力则持续上升,并且上升速率逐渐增加。在湿基含水率低于14%的范围内,当湿基含水率相同时,随着温度的均匀增加,小麦达到双裂纹点所需的应力呈现上升速率越来越快的趋势。而在含水率高于14%的范围内,当湿基含水率相同时,随着温度的均匀增加,小麦达到双裂纹点所需的应力呈现先下降后上升的趋势。在相同温度条件下,当湿基含水率均匀下降时,小麦达到单裂纹点所需的应力呈现下降后上升的趋势,且60 ℃前,温度越低应力的变化范围越大。而小麦达到双裂纹点和龟裂纹点所需的应力则呈现较为均匀的增加趋势。当温度和湿基含水率在各自范围内均匀变化时,对于三种裂纹小麦,湿基含水率对应力的影响程度均大于温度的影响程度,尤其当温度越低时这种影响更加显著。
2.5 爆腰的预测
为了确保小麦在干燥后的品质,需要同时满足工业干燥小麦的要求(爆腰率低于6%)并尽量减少爆腰小麦的裂纹数量。根据图6的结果,可以得到不同温度下小麦爆腰率的变化趋势。随着温度的升高,小麦的爆腰率呈逐渐增加的趋势,并且增加速率也逐渐加快。图中显示,满足工业干燥小麦爆腰率要求的温度范围为30℃~50 ℃。在这个温度范围内,随着温度的增加,小麦单裂纹的数量呈现下降的趋势,而双裂纹和龟裂的数量呈现上升的趋势。这是因为一旦小麦出现裂纹,其承载能力降低,干燥应力的增加会导致裂纹数量增加。
结合微波真空干燥试验数据,可以得出小麦应力随时间变化的规律,如图7所示。其中,恒定温度梯度曲线代表原有干燥方案中时间和应力之间的关系,可变温度梯度曲线表示调整干燥温度后小麦应力与时间的关系。为了降低小麦干燥后的爆腰率和减少爆腰小麦的裂纹数量,采取了调整小麦干燥温度的新方案。该新方案在第7~14 min之间,将温度保持在恒定的40 ℃,以避免由于温度跨度大而大量产生应力裂纹的风险。在14 min之后的时间段内,温度范围从50~70 ℃调整为50~61.4 ℃,通过增加最后阶段的干燥时间,以确保小麦能够达到所需的含水率。新方案试验结果如图7所示,其中恒定温度梯度曲线代表原有干燥方案,可变温度梯度曲线表示调整温度后的新方案。新方案的目标是通过调整温度和干燥条件,减少小麦干燥过程中的应力集中和裂纹形成的风险,从而降低小麦的爆腰率和裂纹数量。对新方案小麦微波干燥过程进行拟合,得出小麦应力与含水率和时间的预测模型:
图 7 应力随时间变化的规律注:恒定温度梯度表示温度梯度在整个过程中保持不变,恒定为2.86 ℃/min;可变温度梯度表示在不同时间段内,温度梯度发生变化,分别为2.86 ℃/min、0 ℃/min和1.63 ℃/min。下同。Figure 7. Stress variation with timeNote: The constant temperature gradient indicates that the temperature gradient remains unchanged throughout the entire process, with a constant value of 2.86 ℃/min. The variable temperature gradient signifies that the temperature gradient varies during different time periods, specifically 2.86 ℃/min, 0 ℃/min, and 1.63 ℃/min, respectively. The same applies throughout the text.$$ \left\{ \begin{gathered} \sigma = 266.28 - 44.75\cos (0.82M) - \\ 217.48\sin (0.82M) + 29.09\cos (1.64M) - \\ 28.88\sin (1.64M) \\ \sigma = - 22.79{t^3} - 13.1{t^2} + 201.18t + 255.13 \\ \end{gathered} \right. $$ (24) 拟合程度值为
0.9979 ,拟合程度值越高,则模型拟合效果越好,因此该模型与新方案干燥数据拟合效果较好。通过实施调整后的温度方案,可以观察到两种方案下小麦爆腰率的变化。改良后的新方案试验结果如图8所示,与原有方案相比,可以观察到小麦爆腰率显著降低。将图8中的爆腰率与图7的应力相对应,可以观察到小麦龟裂的比例明显减少。这表明新的温度方案对小麦干燥后的品质有显著的改善效果。通过减少爆腰率和龟裂的比例,该方案能够有效降低小麦在干燥过程中遭受的应力,从而减少小麦的损伤和裂纹数量。这些结果进一步验证了调整温度方案对于保持小麦品质的重要性,并为小麦干燥过程中的温度控制提供了有益的参考。对新方案的小麦微波干燥过程进行拟合,得出爆腰率与含水率和时间的预测模型:
$$ \left\{ \begin{gathered} {C_r} = 0.88 - 15.1 \times M + 92.75 \times {M^2} - \\ 196.6 \times {M^3} \\ {C_r} = 1.39 \times {10^{ - 5}}{t^3} - 4.93 \times {10^{ - 4}}{t^2} + \\ 0.0071t - 0.0017 \\ \end{gathered} \right. $$ (25) 式中$ {C_r} $表示爆腰率(%),拟合程度值为0.997,因此该模型与新方案干燥数据拟合效果较好。
3. 结 论
1) 微波干燥后温度在于50~70 ℃之间时,较小的变形量就会产生裂纹,随着小麦颗粒的裂纹数量的增加,其承载能力大幅度下降,这种下降的承载能力会使在储藏中的小麦颗粒容易发生更严重的破裂。
2) 有效水分扩散系数的变化规律反映了小麦内部孔隙结构和水分传输的特性。温度的升高加速了小麦内部水分的传输,但同时也破坏了小麦的内部结构,导致干燥裂纹的产生。裂纹的产生总体上加快了水分的传输速率,但也存在传输速率降低的可能。活化能反映水分传输的难易程度,结合有效水分扩散系数可知,它们之间的关系反映了水分扩散过程中的能量需求和效率之间的平衡。
3) 温度和湿基含水率对小麦干燥过程中所受应力具有不同程度的影响。当温度和湿基含水率在各自范围内均匀变化时,对于三种裂纹小麦,湿基含水率对应力的影响程度均大于温度的影响程度,尤其当温度越低时这种影响更加显著。
4) 在小麦的干燥过程中,当应力超过颗粒的强度极限时,会导致裂纹的形成。裂纹的增加会进一步降低小麦颗粒的强度极限。
5) 通过调整干燥温度和时间,在控制小麦的爆腰率的同时减少裂纹数量。要综合考虑温度、时间和干燥条件,以确保小麦在干燥过程中受到的应力分布均匀,从而降低小麦的损伤和裂纹风险,提高小麦的干燥品质。
-
图 1 干燥试验流程图
1. 循环冷却水泵 2. 水循环 3. 计算机 4. 电子天平 5. 红外电子测温仪 6. 物料 7. 微波腔 8. 空气循环 9. 微波源 10. 真空泵
Figure 1. Flow chart of drying experiment
1. Circulation cooling pump 2. Water cycle 3. Computer 4. Electronic balance 5. Infrared electronic thermometer 6. Materials 7. Microwave chamber 8. Air cycle 9. Microwave source 10. Vacuum pump
图 7 应力随时间变化的规律
注:恒定温度梯度表示温度梯度在整个过程中保持不变,恒定为2.86 ℃/min;可变温度梯度表示在不同时间段内,温度梯度发生变化,分别为2.86 ℃/min、0 ℃/min和1.63 ℃/min。下同。
Figure 7. Stress variation with time
Note: The constant temperature gradient indicates that the temperature gradient remains unchanged throughout the entire process, with a constant value of 2.86 ℃/min. The variable temperature gradient signifies that the temperature gradient varies during different time periods, specifically 2.86 ℃/min, 0 ℃/min, and 1.63 ℃/min, respectively. The same applies throughout the text.
表 1 试验因素水平表
Table 1 Factors and levels of experiment
水平level 干燥时间
Drying time/(min)试验温度Experimental temperature/(℃) 1 7 30 2 14 50 3 21 70 表 2 压缩试验方案
Table 2 Compression experiment scheme
小麦短轴Z Wheat brachyaxis/mm 小麦中轴X Wheat axis/mm 小麦长轴Y Major axis of wheat/mm 压缩速率 Compression rate mm/s 压缩目标Compressed target 触发力 Triggering force /N 3.39±0.16 3.88±0.22 7.16±0.19 0.02 mm/s 50% 0.098N 表 3 微波真空干燥试验结果
Table 3 Experimental results
序号
Serial number时间
Time/(min)温度
Temperature/℃湿基含水率
Wet base moisture content/%单裂纹率
Single crack rate/%双裂纹率
Double crack rate/%龟裂率
Multiple crack rate/%物料温度
Material temperature/℃1 7 30 16.9 2.1 0.6 0.3 28.1 2 14 50 14 2.2 2.1 0.7 47.6 3 21 70 11.44 1.7 3.2 4.1 67.1 表 4 不同裂纹点对应的负荷与变形量
Table 4 Load and deformation corresponding to different crack locations
温度Temperature℃ 裂纹状态
Cracked state负荷Load(g) 变形量Deflection(mm) 60 单裂纹 6906 0.62 双裂纹 10988 1.06 龟裂 9735 1.13 70 单裂纹 7283 0.55 双裂纹 11881 1.02 龟裂 11762 1.08 表 5 小麦产生裂纹时,系数a、b与干燥温度T之间的关系
Table 5 Relationship between coefficient a, b and drying temperature T when cracks occur in wheat
干燥温度T/℃ 单裂纹 双裂纹 龟裂纹 $ {a_1} $ $ {b_1} $ $ {a_2} $ $ {b_2} $ $ {a_3} $ $ {b_3} $ 30 −61.3 1246.2 −53.8 1150.9 −34.9 814.1 50 −70.7 1268.7 −109.3 1958.5 −29.3 761.1 70 −29.4 664.3 −47.8 1076.8 −15.2 677.7 表 6 系数a、b与干燥温度T的回归方程
Table 6 The regression equations of coefficients a and b with drying temperature T
裂纹数 $ a $与干燥温度T之间的回归方程 $ b $与干燥温度T之间的回归方程 单裂纹 $ {a_1} = 0.06{T^2} - 5.54T{\text{ + }}47.84 $ $ {b_1} = - 0.78{T^2}{\text{ + }}63.53T + 39.2 $ 双裂纹 $ {a_2} = - 0.15{T^2} - 14.48T{\text{ + }}248.83 $ $ {b_2} = - 2.11{T^2}{\text{ + }}209.31T - 3229.4 $ 龟裂 $ {a_3} = 0.011{T^2} - 0.57T - 29.2 $ $ {b_3} = - 0.038{T^2}{\text{ + }}0.39T + 836.6 $ -
[1] MOUHOUBI K, BOULEKBACHE‐MAKHLOUF L, MEHABA W, et al. Convective and microwave drying of coriander leaves: Kinetics characteristics and modeling, phenolic contents, antioxidant activity, and principal component analysis[J]. Journal of Food Process Engineering, 2022, 45(1): e13932. DOI: 10.1111/jfpe.13932
[2] MORENO Á H, AGUIRRE Á J, MAQUEDA R H, et al. Effect of temperature on the microwave drying process and the viability of amaranth seeds[J]. Biosystems Engineering, 2022, 215: 49-66. DOI: 10.1016/j.biosystemseng.2021.12.019
[3] 仇徐亮,冯蕾,聂梅梅,等. 超声预处理对荠菜微波干燥品质的影响[J]. 农业工程学报,2024,40(6):155-167. DOI: 10.11975/j.issn.1002-6819.202306209 QIU Xuliang, FENG Lei, NIE Meimei, et al. Effects of ultrasonic pretreatment on the microwave drying quality of shepherd's purse (Capsella bursa-pastoris)[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2024, 40(6): 155-167. (in Chinese with English abstract) DOI: 10.11975/j.issn.1002-6819.202306209
[4] 代建武,周厚彬,黄杰,等. 不同干燥方式对红托竹荪干燥特性和品质的影响[J]. 农业工程学报,2024,40(6):90-100. DOI: 10.11975/j.issn.1002-6819.202310096 DAI Jianwu, ZHOU Houbin, HUANG Jie, et al. Effects of different drying technologies on the drying characteristics and quality of Dictyophora rubrovolvata[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2024, 40(6): 90-100. (in Chinese with English abstract) DOI: 10.11975/j.issn.1002-6819.202310096
[5] 任广跃,朱乐雯,段续,等. 苹果丁冷冻-热风联合干燥体积收缩机制[J]. 农业工程学报,2024,40(2):63-71. DOI: 10.11975/j.issn.1002-6819.202306182 REN Guangyue, ZHU Lewen, DUAN Xu, et al. Volume shrinkage mechanism for combined vacuum freeze drying-hot air drying of diced apples[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2024, 40(2): 63-71. (in Chinese with English abstract) DOI: 10.11975/j.issn.1002-6819.202306182
[6] HUANG L L, LIAN M M, DUAN X, et al. Studies on the quality and moisture distribution of kiwifruit dried by freeze drying combined with microwave vacuum drying[J]. Journal of Food Process Engineering, 2021, 44(1): e13581. DOI: 10.1111/jfpe.13581
[7] HUANG J, XU G, LIANG Y, et al. Improving coal permeability using microwave heating technology - A review[J]. Fuel, 2020, 266: 117022. DOI: 10.1016/j.fuel.2020.117022
[8] ZIELINSKA M, ROPELEWSKA E, XIAO H W, et al. Review of recent applications and research progress in hybrid and combined microwave-assisted drying of food products: Quality properties[J]. Critical Reviews in Food Science and Nutrition, 2020, 60(13): 2212-2264. DOI: 10.1080/10408398.2019.1632788
[9] XUE L, GAO R, SHEN L, et al. Dependence of degradation of anthocyanins on non-uniformity of microwave heating in blueberry puree[J]. Food and Bioproducts Processing, 2023, 139: 129-143. DOI: 10.1016/j.fbp.2023.03.009
[10] ANDO Y, NEI D. Comparison of potato void structures dried by air-drying, freeze-drying, and microwave-vacuum-drying, and the physical properties of powders after grinding[J]. Food and Bioprocess Technology, 2023, 16(2): 447-458. DOI: 10.1007/s11947-022-02941-x
[11] LIU H, LIU H, LIU H, et al. Microwave drying characteristics and drying quality analysis of corn in China[J]. Processes, 2021, 9(9): 1511. DOI: 10.3390/pr9091511
[12] CÂRLESCU P M, BĂETU M M, ROȘCA R, et al. Studies on the physical changes in corn seeds during hybrid drying (convection and microwave)[J]. Agriculture, 2023, 13(3): 519. DOI: 10.3390/agriculture13030519
[13] JIMOH K A, HASHIM N, SHAMSUDIN R, et al. Recent advances in the drying process of grains[J]. Food Engineering Reviews, 2023, 15: 548-576. DOI: 10.1007/s12393-023-09333-7
[14] 陈先冠,冯利平,白慧卿,等. 基于小麦模型算法集成平台的三种水分胁迫算法比较[J]. 农业工程学报,2021,37(16):47-57. DOI: 10.11975/j.issn.1002-6819.2021.16.007 CHEN Xianguan, FENG Liping, BAI Huiqing, et al. Comparison of three water stress algorithms based on the integration platform of wheat model algorithms[J]. Transactions of the Chinese Society of Agricultural Engineering (Transaction of CSAE), 2021, 37(16): 47-57. (in Chinese with English abstract) DOI: 10.11975/j.issn.1002-6819.2021.16.007
[15] 吴威,祖广鹏,陈桂云,等. 利用光谱趋势参数快速判定小麦粉DON等级的研究[J]. 光谱学与光谱分析,2020,40(5):1565-1568. WU Wei, ZU Guangpeng, CHEN Guiyun, et al. The study on quickly determining DON level in wheat flour by trend parameter of spectra[J]. Spectroscopy and Spectral Analysis, 2020, 40(5): 1565-1568. (in Chinese with English abstract)
[16] Beke J, Vas A, Mujumdar A S. Impact op process parameters on the nutritional value of convectively dried grains[J]. Drying Technology, 1993, 11(6): 1415-1428. DOI: 10.1080/07373939308916907
[17] Abasi S, Minaei S. Effect of drying temperature on mechanical properties of dried corn[J]. Drying technology, 2014, 32(7): 774-780. DOI: 10.1080/07373937.2013.845203
[18] Jindal V K, Herum F L, Mensah J K A. Effects of repeated freezing-thawing cycles on the mechanical strength of corn kernels[J]. Transactions of the ASAE, 1978, 21(2): 367-0370. DOI: 10.13031/2013.35305
[19] Zapotoczny P, Markowski M, Majewska K, et al. Effect of temperature on the physical, functional, and mechanical characteristics of hot-air-puffed amaranth seeds[J]. Journal of food Engineering, 2006, 76(4): 469-476. DOI: 10.1016/j.jfoodeng.2005.05.045
[20] Güner M, Dursun E, Dursun I G. Mechanical behaviour of hazelnut under compression loading[J]. Biosystems Engineering, 2003, 85(4): 485-491. DOI: 10.1016/S1537-5110(03)00089-8
[21] Moya Ignacio M, Sánchez Ávila D, Villar García J R. Values for the mechanical properties of wheat, maize and wood pellets for use in silo load calculations involving numerical methods[J]. Agronomy, 2022, 12(6): 1261 DOI: 10.3390/agronomy12061261
[22] SINGH D, MISHRA S, SHANKAR R. Drying kinetics and performance analysis of indirect solar dryer integrated with thermal energy storage material for drying of wheat seeds: an experimental approach[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2022, 44(3): 7967-7985. DOI: 10.1080/15567036.2022.2118907
[23] QIAO Y, WANG X, XU H, et al. Numerical analysis for viscoelastic fluid flow with distributed/variable order time fractional Maxwell constitutive models[J]. Applied Mathematics and Mechanics(English Edition), 2021, 42(12): 1771-1786. DOI: 10.1007/s10483-021-2796-8
[24] 王洪波,马哲,乌兰图雅,等. 采用BP神经网络和Burgers模型的细观参数标定[J]. 农业工程学报,2022,38(23):152-161. DOI: 10.11975/j.issn.1002-6819.2022.23.016 WANG Hongbo, MA Zhe, WULANTUYA, et al. Calibration method of mesoscopic parameters using BP neural network and Burgers model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transaction of CSAE), 2022, 38(23): 152-161. (in Chinese with English abstract) DOI: 10.11975/j.issn.1002-6819.2022.23.016
[25] MURATA K, UTSUMI M, HIRATA T, et al. Effect of thermal modification on the stress relaxation behavior and microstructure of the cell wall[J]. Journal of Wood Science, 2023, 69(1): 25. DOI: 10.1186/s10086-023-02098-x
[26] HE Y, LI H, DU J. Fitting methods based on custom neural network for relaxation modulus of viscoelastic materials[J]. International Journal of Performability Engineering, 2019, 15(1): 107.
[27] 张月,从强,刘荣强,等. 平面薄膜结构耦合动力学特性研究与无量纲分析[J]. 振动工程学报,2022,35(2):495-502 ZHANG Yue, CONG Qiang, LIU Rongqiang, et al. Coupling dynamics and dimensionless analysis of a planar membrane structure[J]. Journal of Vibration Engineering, 2022, 35(2): 495-502. (in Chinese with English abstract)
[28] 陈嘉聪,黄永德,朱文娟,等. 基于Arrhenius方程建立湿米粉货架期预测模型的研究[J]. 中国农学通报,2022,38(33):132-138. DOI: 10.11924/j.issn.1000-6850.casb2022-0117 CHEN Jiacong, HUANG Yongde, ZHU Wenjuan, et al. The shelf life of wet rice noodle: Prediction based on arrhenius equation[J]. Chinese Agricultural Science Bulletin, 2022, 38(33): 132-138. (in Chinese with English abstract) DOI: 10.11924/j.issn.1000-6850.casb2022-0117
[29] Li Y B, Cao C W, Yu Q L, et al. Study on rough rice fissuring during intermittent drying[J]. Drying Technology, 1998, 17(9): 1779-1793. DOI: 10.1080/07373939908917652
[30] SHEN L, GAO M, ZHU Y, et al. Microwave drying of germinated brown rice: Correlation of drying characteristics with the final quality[J]. Innovative Food Science & Emerging Technologies, 2021, 70: 102673.
[31] RILEY D, EINAV I, GUILLARD F. A constitutive model for porous media with recurring stress drops: From snow to foams and cereals[J]. International Journal of Solids and Structures, 2023, 262: 112044.
[32] SHENG S, SHI A, XING J. A systematical rheological study of maize kernel[J]. Foods, 2023, 12(4): 738. DOI: 10.3390/foods12040738
[33] 华云龙,傅志一,秦太验,等. 关于谷物湿膨胀系数的讨论[J]. 农业工程学报,1998(2):209-214. DOI: 10.3321/j.issn:1002-6819.1998.02.043 HUA Yunlong, FU Zhiyi, QIN Taiyan, et al. Discussions on hydroscopic expansion coefficient of grains[J]. Transactions of the Chinese Society of Agricultural Engineering (Transaction of CSAE), 1998(2): 209-214. (in Chinese with English abstract) DOI: 10.3321/j.issn:1002-6819.1998.02.043
[34] ZHU X, CHI R, MA Y. Effects of corn varieties and moisture content on mechanical properties of corn[J]. Agronomy, 2023, 13(2): 545. DOI: 10.3390/agronomy13020545
[35] ASAE S368.4 DEC2000 (R2008), Compression test of food ma terials of convex shape[R]. St. Joseph: American Society of Agricultural and Biological Engineers, 2008.
[36] LI H, LI X, FU J, et al. Experimental study on compressive behavior and failure characteristics of imitation steel fiber concrete under uniaxial load[J]. Construction and Building Materials, 2023, 399: 132599. DOI: 10.1016/j.conbuildmat.2023.132599
[37] WEI H, LI J, HU B, et al. Influence of temperature on deformation failure and acoustic emission characterisation of asphalt concrete under uniaxial compression[J]. International Journal of Pavement Engineering, 2023, 24(2): 2038380. DOI: 10.1080/10298436.2022.2038380
[38] 周萌萌,孙慧男. 基于准静态压缩方法的玉米粒破碎试验[J]. 农业工程学报,2024,40(9):289-296. DOI: 10.11975/j.issn.1002-6819.202311027 ZHOU Mengmeng, SUN Huinan. Experimental study on corn grain crushing via quasi-static compression method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2024, 40(9): 289-296. (in Chinese with English abstract) DOI: 10.11975/j.issn.1002-6819.202311027
[39] 李栋,毛志怀. 稻谷应力裂纹的分形研究[J]. 中国农业大学学报,2003(2):11-14. DOI: 10.3321/j.issn:1007-4333.2003.02.003 LI Dong, MAO Zhihuai. Study on stress cracks of rough rice with the fractal theory[J]. Journal of China Agricultural University, 2003(2): 11-14. (in Chinese with English abstract) DOI: 10.3321/j.issn:1007-4333.2003.02.003
[40] 康艳,金诚谦,陈艳普,等. 谷物籽粒损伤研究现状[J]. 中国农机化学报,2020,41(7):94-104. KANG Yan, JIN Chengqian, CHEN Yanpu, et al. Research status of grain damage in cereals[J]. Journal of Chinese Agricultural Mechanization, 2020, 41(7): 94-104. (in Chinese with English abstract)
[41] 马云龙,谢辉,张雯,等. 温度对绿色葡萄干色泽及干燥特性的影响[J]. 新疆农业科学,2024,61(2):345-354. DOI: 10.6048/j.issn.1001-4330.2024.02.010 MA Yunlong, XIE Hui, ZHANG Wen, et al. Effects of temperature on color and drying characteristics of green raisins[J]. Xinjiang Agricultural Sciences, 2024, 61(2): 345-354. (in Chinese with English abstract) DOI: 10.6048/j.issn.1001-4330.2024.02.010
[42] ALIBAS I. Mathematical modeling of microwave dried celery leaves and determination of the effective moisture diffusivities and activation energy[J]. Food Science & Technology, 2014, 34: 394-401.
[43] 朱德泉,周杰敏,王继先,等. 小麦微波干燥特性及工艺优化研究[J]. 包装与食品机械,2006,24(1):18-22+43. DOI: 10.3969/j.issn.1005-1295.2006.01.005 ZHU Dequan, ZHOU Jiemin, WANG Jixian, et al. Study on microwave drying characteristics and technology optimization of wheat grain[J]. Packaging and Food Machinery, 2006, 24(1): 18-22+43. (in Chinese with English abstract) DOI: 10.3969/j.issn.1005-1295.2006.01.005
[44] YAN J, WEI H, WU H, et al. Thermodynamics and non-uniformity in convective reversing drying wheat[J]. Applied Thermal Engineering, 2023, 231: 120948. DOI: 10.1016/j.applthermaleng.2023.120948
[45] PANDISELVAM R, AYDAR A Y, KUTLU N, et al. Individual and interactive effect of ultrasound pre-treatment on drying kinetics and biochemical qualities of food: A critical review[J]. Ultrasonics Sonochemistry, 2023, 92: 106261. DOI: 10.1016/j.ultsonch.2022.106261