Distribution characteristics of eroded sediment particles in purple slope cultivated land under different straw mulch amount
-
摘要:
在次降雨条件下,秸秆覆盖可能影响径流对泥沙的分选作用从而改变侵蚀泥沙团粒分布,为明确秸秆覆盖对紫色土坡耕地侵蚀泥沙团粒分布的影响,通过不同秸秆覆盖量(0、0.2、0.4、0.6、0.8 kg/m2)和坡度(10°、15°、20°),在室内人工降雨条件下,探究侵蚀泥沙中各粒级团粒(<0.002、0.002~0.05、0.05~2 mm)含量及其富集率(enrichment rate, ER)和中值粒径(D0.5)含量的变化特征。结果表明:1)<0.002、0.002~0.05和0.05~2 mm侵蚀泥沙团粒含量随降雨历时分别呈稳定、下降和上升的变化趋势。2)随秸秆覆盖量增加,<0.002 mm团粒含量整体呈先增加后减少的趋势,与裸坡相比,0.8 kg/m2秸秆覆盖可显著减少30.97%~55.46%的<0.002 mm团粒含量,表明秸秆覆盖下紫色土坡耕地主要以<0.002 mm团粒流失。0.002~0.05 mm团粒含量整体呈增加的趋势,15°坡面0.2 kg/m2秸秆覆盖下0.002~0.05 mm团粒含量比0、0.4、0.6和0.8 kg/m2显著低22.54%、21.09%、36.01%和19.29%。3)同一坡度下中值粒径总体随秸秆覆盖量的增加呈先增加后降低趋势,20°坡面0.8 kg/m2条件下中值粒径含量比0、0.4、和0.6 kg/m2显著高26.28%、37.03%和34.48%。4)在各坡度和秸秆覆盖量条件下,ER0.002~0.05均大于1,而ER<0.002和ER0.05~2则均小于1。0.2 kg/m2覆盖量的ER0.002~0.05均显著低于其他4个秸秆覆盖量,且随着秸秆覆盖量的增加呈现先减少后增大的趋势。5)<0.002 mm团粒含量及富集率与秸秆覆盖量间存在显著的二次函数关系,大部分在秸秆覆盖量为0.2 kg/m2时最大。研究结果将为紫色土区坡耕地秸秆覆盖措施的优化提供科学依据。
Abstract:Under the condition of secondary rainfall, straw mulching may affect the sorting effect of runoff on sediment and thus change the aggregate distribution of eroded sediment. In order to clarify the influence of straw mulching on the aggregate distribution of eroded sediment on purple slope cultivated land, different straw mulching amounts (0, 0.2, 0.4, 0.6, 0.8 kg/m2) and gradients (10°,15°,20°) were adopted. Under the indoor artificial rainfall conditions, the change characteristics of the content of each particle size (<0.002, 0.002-0.05, 0.05-2 mm) and its enrichment rate (ER) and median particle size (D0.5) in the eroded sediment were investigated. The results show as follows: 1) The variation trend of <0.002 mm eroded sediment aggregates with rainfall duration is stable, and the variation trend of 0.002-0.05 mm and 0.05-2 mm eroded sediment aggregates with rainfall duration is gradually decreasing and increasing, respectively. 2) With the increase of straw cover amount, the aggregate content of <0.002 mm increased first and then decreased, and the aggregate content of 0.002-0.05 mm increased as a whole. Compared with the bare slope, 0.8 kg/m2 straw mulching can significantly reduce the <0.002 mm aggregate content by 30.97-55.46%, indicating that the purple slope under straw mulching mainly lost <0.002 mm aggregate content. Under straw covering on a 15°, the aggregate content of 0.002-0.05 mm at 0.2 kg/m2 was significantly lower by 22.54%, 21.09%, 36.01% and 19.29% than that of 0, 0.4, 0.6 and 0.8 kg/m2. At 10° slope surface, the 0.05-2 mm eroded sediment content of 0.2 kg/m2 straw mulch was significantly higher than that of the other 4 straw mulch covers. 3) Under the same slope, the median particle size initially increased and then decreased with the increase of straw cover amount, and the change of median particle size with the slope was affected by the straw cover amount. The median particle size content of 0.8 kg/m2 on 20° slope was significantly higher by 26.28%, 37.03% and 34.48% than that of 0, 0.4, and 0.6 kg/m2. 4) Under the conditions of slope and straw cover, ER0.002-0.05 is greater than 1, while ER<0.002 and ER0.05-2 are less than 1. ER<0.002 had no difference at 10° and 20° under the coverage of 0 kg/m2 and 0.4 kg/m2, and the other conditions had significant differences. Under the three gradients, the ER0.002-0.05 of 0.2 kg/m2 mulch was significantly lower than that of the other four covers, and showed a trend of first decreasing and then increasing with the increase of straw mulch. The ER0.05-2 of 0.2 kg/m2 coverage at each slope was significantly higher than that of other coverage (P<0.05). When the coverage of straw was 0 kg/m2 and 0.6 kg/m2, the ER0.002-0.05 on the 15° slope was significantly higher than that on the 10° and 20° slopes. 5) There is a significant quadratic function relationship between the aggregate content and enrichment rate of <0.002 mm and the straw mulch amount, and the major maximum is reached when the straw mulch amount is 0.2 kg/m2. When the amount of straw applied is greater than 0.4 kg/m2, the loss of clay particles can be effectively reduced.The results of this study will deepen the understanding of the distribution law of eroded sediment in slope farmland in purple soil area, and provide scientific basis for the optimization of straw mulching measures.
-
0. 引 言
土壤侵蚀导致了严重的土地退化,对粮食以及生态安全构成威胁。紫色土风化成土速率快、土壤矿物质及养分含量高,表现出一定的宜种性和宜肥性[1]。因此,大多数紫色土坡地已被开垦为耕地。然而,紫色土土层浅薄,结构松散,且多数紫色土坡耕地土壤容重较大以及团聚体含量较少。在高强度的人为耕作扰动和降雨驱动下,陡而短的紫色土坡耕地上耕作侵蚀速率能够占总土壤侵蚀速率的80%以上[1]。根据《2023年中国水土保持公报》(水利部),西南紫色土区水力侵蚀造成的水土流失面积达13.16万km2。目前,紫色土坡耕地已成为中国水土流失最为严重的地类之一[2-3],严重的坡耕地水土流失不仅造成了水土资源的浪费和面源污染加重的风险,还制约着地区经济和农业的可持续发展。
作为紫色土区常用的耕作保护措施之一,秸秆覆盖主要在降雨及地表汇流过程中影响土壤侵蚀。秸秆覆盖具有延缓产流时间和减少径流量的效果[4],同时还可以增加地表粗糙度,通过减小地表径流流速、水流功率和和水流剪切力等水力特性,从而获得良好的减沙效益[5]。学者们研究了紫色土区域秸秆覆盖对产流产沙的影响并取得了一些进展[6-8]。对于紫色土坡耕地,严坤等[9]研究发现,秸秆覆盖延迟了坡面产流时间,且显著影响减沙效益。徐露等[10]通过将秸秆覆盖与耕作措施相结合发现,秸秆覆盖能有效降低径流深和土壤流失量。黄新君等[11]通过野外试验发现秸秆覆盖显著降低单位径流侵蚀量,增施有机质的同时进行秸秆覆盖可作为紫色土区坡耕地减小土壤可蚀性的有效措施。而且随着秸秆覆盖率的增加,西南山丘区紫色土土壤结构得到改善,持水能力增加,抗蚀抗冲能力增大[12]。以上研究均表明,秸秆覆盖措施能够有效防护紫色土坡耕地的水土流失,在尽可能节省经济成本的情况下,秸秆覆盖可能是保护紫色土坡耕地肥力的最优选择之一。
通常,在坡耕地水力侵蚀过程中,受径流的分选作用,侵蚀产沙团粒的粒径分布具有一定的特征。侵蚀泥沙团粒的粒径分布特征不仅可以反映泥沙的分离、搬运和沉积过程,还影响坡耕地养分流失过程[13]。侵蚀泥沙团粒形状不规则,其分布和富集特征不仅受坡长、雨型[14]、土壤类型[15-17]等因素的影响,还受下垫面条件[18]的控制。目前,对侵蚀泥沙团粒分布特征和富集的研究主要集中在裸坡条件下。如在侵蚀泥沙团粒分布方面,蒋倩等[15]研究发现,在紫色土区裸坡上,随着产流历时的增加,细沟侵蚀产生的泥沙颗粒以粉粒为主,黏粒最少。也有研究表明,侵蚀泥沙团粒呈现双峰分布,即大团粒和小团粒都容易被搬运[19]。在侵蚀泥沙团粒富集方面,泥沙团粒的富集主要以粉粒和黏粒为主,其含量随降雨历时的增加逐渐降低[16,20-21],由于坡面径流的分选作用,质量轻和结构松散的土壤团粒容易流失,导致不同程度的泥沙团粒富集。秸秆覆盖能够显著改变下垫面条件,增加地表粗糙度。作为侵蚀泥沙团粒运输的载体,坡面径流受到覆盖秸秆的分割和机械阻滞作用,使其水力学特性受到明显改变,进而可能显著影响侵蚀泥沙团粒的分布和富集特征。目前关于秸秆覆盖下的侵蚀泥沙团粒分布和富集特征的研究较为少见。近年来,有关秸秆覆盖措施的研究主要集中在中国西北黄土区[6]和东北黑土区[17,22]。基于人工降雨条件对侵蚀过程的研究也主要关注于地表径流水动力特征和养分流失过程。紫色土区域坡耕地土壤质地不均匀,土壤颗粒的粒径相差较大,秸秆覆盖可能会进一步影响其坡面侵蚀的产沙过程以及侵蚀泥沙团粒分布特征[23]。然而,目前针对秸秆覆盖条件下紫色土侵蚀泥沙,尚未有较多研究深入探讨其团粒粒径分布特征的变化规律;利用人工模拟降雨手段对紫色土坡耕地不同秸秆覆盖量影响侵蚀泥沙团粒分布的定量研究还有待深入。鉴于此,本文基于室内模拟降雨试验,研究不同秸秆覆盖量对紫色土坡耕地侵蚀泥沙团粒分布特征的影响,为紫色土区秸秆合理配置,保护耕地质量和农业可持续发展等方面提供科学依据。
1. 材料与方法
1.1 试验区概况
试验地位于重庆市西南大学后山试验基地(30°26′N,106°26′E),该地属于亚热带季风气候,海拔 266.3 m,年降水量为
1115.3 mm,年平均气温为18.3 ℃,年日照时间达1276.7 h。供试土壤为中生代侏罗系沙溪庙组紫色砂泥岩母质发育的石灰性紫色土,偏弱碱性。供试土壤基本性质见表1。表 1 供试土壤基本性质Table 1. Basic properties of tested soil土壤团粒组成
Soil mechanical composition/%容重
Bulk density/
(g·cm−3)有机质
Organic matter
content/(g·kg−1)pH值
pH
value<0.002 mm 0.002~0.05 mm 0.05~2 mm 10.58±0.32 35.22±1.42 54.2±1.1 1.20±0.03 3.89±0.12 8.16 1.2 试验设计与过程
本试验利用设计土槽,以紫色土为研究对象,采用中科院水土保持研究所研制的组合侧喷式野外人工模拟降雨装置于2022年9月至2022年12月进行室内模拟降雨。该降雨装置包括两个侧喷喷嘴、两个水压计和三脚架以及一个泵。侧喷喷嘴水平对称放置在土槽两侧,水平间距4 m,喷嘴距地面垂直高度5 m,雨强可调节范围为30~230 mm/h。试验钢制土槽规格为长2 m×宽0.5 m×高0.5 m,坡度通过与钢制土槽顶部连接的铰链进行调节,土槽尾部设有出水口以收集地表径流及泥沙。秸秆覆盖超过0.2 kg/m2时可有效减少产沙量[24],而秸秆覆盖量为0.2~0.4 kg/m2时减沙效益最佳[25]。研究区收获玉米秸秆最大干质量为0.8 kg/m2,因此,基于最大干质量本研究设置0、0.2、0.4、0.6和0.8 kg/m2 5个秸秆覆盖量(均为干质量),并将风干后秸秆截为长20 cm左右的小段,同时将试验所需的秸秆提前浸泡24 h,以减小秸秆表面养分的影响。根据研究区的多年气象资料[26],夏季小时强降水最大为84.9 mm,加之近年来三峡库区3类极端降雨事件频发并呈现增加趋势[27],故设计降雨强度为90±3 mm/h,降雨历时1 h。将3个试验坡度(10°、15°和20°)和5个秸秆覆盖量(0、0.2、0.4、0.6和0.8 kg/m2)组合进行试验,每个处理重复两次,共30场降雨。试验装置见图1。
1.3 样品采集
将试验土壤自然风干过10 mm筛后进行装填,根据野外实际条件下的土壤容重(1.20±0.03)和含水率(5.90%)计算填土质量。装填土壤前先在土槽底部填一层10 cm的细砂,再打毛压实分层装填土壤,装填土槽两侧土壤稍高以减小边缘效应,填土深度为30 cm。土壤装填完成后利用小于30 mm/h的雨强湿润土壤,再利用土壤湿度计测量土壤含水量直至土壤饱和后沉降24 h。每次试验开始前通过调节水阀使降雨强度和降雨均匀度符合试验设计要求,雨强率定采用量筒法,降雨均匀度>90%。试验土槽产生径流后开始用径流桶收集径流并用秒表计时,0~10 min内每2 min利用径流桶采集径流泥沙样品,10~60 min内每5 min采集径流泥沙样品,每场降雨共计15个样品。采样结束后将样品轻轻混合均匀并用250 mL的径流瓶采集带回实验室进行粒径分布等指标的室内测定。每场试验结束后更换产沟的表层土壤部分,并进行与之前相同的试验准备。
1.4 研究方法
侵蚀泥沙团粒测定分析采用Rise-220X 型全自动激光粒度分析仪,测定范围为:0~2 mm,测得粒度分布(包括泥沙含量)为体积百分比,因此本研究所有泥沙含量均表示体积分数。本试验不对样品进行任何物理和化学分散,直接利用仪器测其粒径组成,真实表征侵蚀过程中的泥沙团粒和运移状态[14]。本文泥沙团粒分级采用美国农业部土壤粒径分级方法,将泥沙团粒分为<0.002 mm(黏粒)、0.002~0.05(粉粒)、0.05~2 mm(砂粒)3个粒级进行研究并计算了中值粒径含量。
泥沙团粒富集率(ER)表述坡面土壤流失过程中泥沙不同粒级团聚体的富集现象,也是量化侵蚀泥沙分选强弱的重要指标,结果通过式(1)计算:
$$ ER=\frac{{P}_{s}}{{P}_{o}} $$ (1) 式中$ {P}_{s} $为侵蚀泥沙中$ s $粒级的团聚体含量,$ {P}_{o} $为源土壤中对应粒级的团聚体含量。当ER<1、ER>1和ER=1分别代表该粒级团聚体在侵蚀过程中发生损耗、富集和既不损耗也不富集。本研究中,ER0.002、ER0.002~0.05和ER0.05~2分别表示团粒粒级为<0.002、0.002~0.05 mm和0.05~2 mm的泥沙团粒富集率。
1.5 数据分析
采用Microsoft Excel 2021进行数据整理、计算,采用SPSS25.0软件进行数据统计分析。本文分析所使用数据均为均值。采用单因素方差(one way analysis of variance,ANOVA)分析不同坡度和秸秆覆盖量对各粒级团粒(<0.002、0.002~0.05、0.05~2 mm)含量、中值粒径(D0.5)和各粒级团粒富集率的影响;采用 Pearson 相关分析揭示坡度和秸秆覆盖量与各粒级泥沙团粒含量及富集率之间的关系;采用回归分析研究侵蚀泥沙团粒与秸秆覆盖量之间的变化关系。本文显著性水平为P<0.05为显著;P<0.01为极显著。使用Origin2022软件进行图表的绘制。
2. 结果与分析
2.1 秸秆覆盖对不同粒级侵蚀泥沙团粒含量的影响
侵蚀泥沙各粒级团粒含量随降雨历时变化如图2所示。不同坡度下,<0.002 mm团粒含量随降雨历时整体变化均较小,无明显变化趋势(图2a)。其中,0.8 kg/m2秸秆覆盖量下<0.002 mm团粒含量均较低。0.002~0.05 mm团粒含量在3个坡度下随着降雨历时的增加整体呈现减小的变化趋势(图2b)。10°坡面0.2 kg/m2秸秆覆盖量下,0.002~0.05 mm团粒含量降低幅度最大,达到56.87%。10°和15°坡面时,0.2 kg/m2秸秆覆盖量下的0.002~0.05 mm团粒含量最低。3个坡度条件下0.05~2 mm团粒含量随降雨历时延长整体呈增大的变化趋势(图2c)。10°和15°坡面,秸秆覆盖量为0.2 kg/m2时,0.05~2 mm团粒含量高于另外4个秸秆覆盖量。坡度为10°秸秆覆盖量0.4 kg/m2时,0.05~2 mm团粒含量增加最多,由19.79%增加到45.96%。
各粒级团粒含量在不同秸秆覆盖量和坡度条件下的差异性分析如图3。同一坡度下各秸秆覆盖量对各粒级团粒含量影响显著。随秸秆覆盖量增加,<0.002 mm团粒含量整体呈先增加后减少的趋势,0.002~0.05 mm团粒含量整体呈增加的趋势,而0.05~2 mm团粒含量则无明显变化趋势。与裸坡相比,0.8 kg/m2秸秆覆盖量可显著减少30.97%~55.46%的<0.002 mm团粒含量(图3a)。秸秆覆盖量为0.2 kg/m2时,15°坡面的<0.002 mm团粒含量相较于0、0.4、0.6和0.8 kg/m2分别高12.56%,13.54%,57.58%和63.07%;0.002~0.05 mm团粒含量相较于0、0.4、0.6和0.8 kg/m2分别低22.54%,21.09%,26.01%和19.29%;10°坡面的0.05~2 mm团粒含量显著高于另外4个覆盖量,较0、0.4、0.6和0.8 kg/m2分别高27.30%,34.49%,33.34%和41.06%。
图 3 不同粒级侵蚀泥沙团粒含量变化特征注:不同大写字母表示同一秸秆覆盖量下不同坡度差异显著(P<0.05),不同小写字母表示同一坡度下不同秸秆覆盖量差异显著(P<0.05)。下同。Figure 3. Change characteristics of the eroded sediment aggregate content with different particle sizesNote: Different capital letters indicate significant difference in different slope under the same straw mulch amount (P<0.05), while different lowercase letters indicate significant differences in different straw mulch amount under the same slope (P<0.05). Same below.同一秸秆覆盖量下,各粒级团粒含量随坡度的变化则受秸秆覆盖量的显著影响。秸秆覆盖量为0时,15°坡面下的<0.002 mm和0.002~0.05 mm团粒含量均显著高于10°和20°坡面,<0.002 mm团粒含量分别高6.24%和14.23%,0.002~0.05 mm团粒含量分别高7.59%和11.27%;而15°坡面下的0.05~2 mm团粒含量则显著低于20°坡面,低20.25%。秸秆覆盖量为0.2 kg/m2时,15°坡面下的<0.002 mm团粒含量显著高于10°和20°坡面,分别高11.61%和46.88%;20°坡面下的0.002~0.05 mm团粒含量显著高于10°和15°坡面,分别高8.02%和9.21%。秸秆覆盖量为0.4 kg/m2时各坡度下0.002~0.05 mm和0.05~2 mm团粒含量均差异不显著。
2.2 秸秆覆盖对中值粒径含量的影响
中值粒径从侧面表征侵蚀泥沙的侵蚀和沉积行为,对研究沉积环境和物质输运等起着重要作用。较小的中值粒径表明泥沙更容易被水力侵蚀,较大的中值粒径则表明泥沙更容易沉积在河流或其他水体,从而客观反映侵蚀泥沙的来源、侵蚀过程和沉积环境。各坡度和秸秆覆盖量条件下中值粒径含量变化如图4所示。结果表明,同一坡度下中值粒径总体随秸秆覆盖量的增加呈先增加后降低的趋势,而中值粒径随坡度的变化则受秸秆覆盖量的显著影响。在10°和15°坡面下,0.2 kg/m2秸秆覆盖量的中值粒径含量显著高于另外4个秸秆覆盖量;20°坡面时,0.2 kg/m2和0.8 kg/m2秸秆覆盖量的中值粒径含量显著高于另外3个秸秆覆盖量,且0.8 kg/m2较0、0.4和0.6 kg/m2分别高26.28%,37.03%,34.48%。
秸秆覆盖量为0时,15°坡面的中值粒径显著低于10°和20°的中值粒径含量,分别低25.27%和20.02%,表明此秸秆覆盖量下水力侵蚀严重。秸秆覆盖量为0.2 kg/m2时,10°坡面的中值粒径含量和极差达到最大,分别为51.91和26.87,说明此条件下中值粒径含量波动较大,更容易发生沉积。0.4和0.6 kg/m2秸秆覆盖量条件下各坡度中值粒径含量差异不显著。而秸秆覆盖量为0.8 kg/m2时,20°坡面下的中值粒径含量不减反增且显著高于10°和15°的中值粒径含量,分别高出35.6%和36.9%。
2.3 不同坡度和秸秆覆盖量对各粒级侵蚀泥沙团粒富集率的影响
不同坡度和秸秆覆盖量条件下各粒级团粒富集率差异性分析结果如表2所示。<0.002、0.002~0.05 mm和0.05~2 mm侵蚀泥沙团粒富集率变化范围分别为0.20~0.58,1.36~1.89,0.51~0.84。不同试验条件下,ER0.002~0.05均大于1,而ER<0.002和ER0.05~2则均小于1,说明在本次试验中只有0.002~0.05 mm团粒在侵蚀过程中发生了富集。总体上,随着秸秆覆盖量的增大,ER<0.002呈现先上升后下降的趋势,ER0.002~0.05则呈先下降后上升的趋势,ER0.05~2变化范围浮动较小,其中ER0.05~2在各个坡度下当秸秆覆盖量为0.2 kg/m2时达到最大值。
表 2 不同坡度和秸秆覆盖量下各粒级侵蚀泥沙团粒富集率Table 2. Aggregate enrichment rates of eroded sediment at different particles levels under different slope and straw mulch amount坡度
Slope gradient/(°)秸秆覆盖量
Straw mulch amounts/(kg·m−2)各粒级侵蚀泥沙富集率
Sediment enrichment rate of each particles levelER<0.002 ER0.002~0.05 ER0.05~2 10 0 0.48±0.03Bb 1.68±0.17Bb 0.66±0.10ABb 0.2 0.52±0.03Ba 1.37±0.24Bc 0.84±0.10Aa 0.4 0.54±0.08Aa 1.71±0.24Aab 0.63±0.15Ab 0.6 0.26±0.02Cc 1.79±0.16Bab 0.63±0.10Ab 0.8 0.27±0.03Bc 1.84±0.19Aa 0.59±0.11Bb 15 0 0.51±0.06Ab 1.81±0.14Aa 0.51±0.18Bc 0.2 0.58±0.01Aa 1.36±0.24Bc 0.79±0.12ABa 0.4 0.51±0.02Bb 1.77±0.11Aab 0.59±0.07Abc 0.6 0.37±0.10Bc 1.89±0.16Aa 0.54±0.10Bbc 0.8 0.35±0.05Ac 1.68±0.26Ab 0.60±0.16Bb 20 0 0.45±0.05Bc 1.62±0.09Ba 0.70±0.06Ab 0.2 0.39±0.16Cc 1.53±0.12Ab 0.77±0.07Ba 0.4 0.50±0.14ABa 1.68±0.11Aa 0.65±0.07Ac 0.6 0.49±0.03Ab 1.69±0.09Ca 0.62±0.09Ac 0.8 0.20±0.06Cd 1.60±0.12Bab 0.76±0.09Aab 注:表中数据均为平均值±标准差。 Note: All data in the table are mean ± standard deviation. 结果表明ER0.05~2、ER0.002~0.05和ER<0.002在不同秸秆覆盖量和坡度下差异性显著。10°和15°坡面下,0.6 kg/m2和0.8 kg/m2覆盖量的ER<0.002显著低于其他3个秸秆覆盖量,20°坡面时0.8 kg/m2覆盖量的ER<0.002则显著低于其他4个秸秆覆盖量,分别低55.56%,48.72%,60.00%和59.18%。3个坡度条件下,0.2 kg/m2覆盖量的ER0.002~0.05均显著低于其他4个秸秆覆盖量,并且随着秸秆覆盖量的增加呈现先减少后增大的趋势;而0.2 kg/m2覆盖量下的ER0.05~2均显著高于其他4个秸秆覆盖量。同一秸秆覆盖量下,ER<0.002在0 kg/m2和0.4 kg/m2覆盖量下的10°和20°坡面没有差异性,其余各条件下均差异性显著。秸秆覆盖量为0 kg/m2和0.6 kg/m2时15°坡面的ER0.002~0.05显著高于10°和20°坡面。0 kg/m2秸秆覆盖量时15°坡面的ER0.002~0.05分别高7.73%和11.73%,0.6 kg/m2秸秆覆盖量时分别高5.59%和11.83%。0.4 kg/m2覆盖量下各坡度的ER0.002~0.05均没有显著性差异。
2.4 不同秸秆覆盖量和坡度与各指标相关关系
不同秸秆覆盖量和坡度下各粒级侵蚀泥沙团粒及富集率相关关系如表3所示。结果表明,坡度与各粒级团粒及其富集率之间关系均不显著,而秸秆覆盖量与<0.002 mm团粒和ER<0.002呈极显著负相关。为探究秸秆覆盖量对<0.002 mm团粒含量和ER<0.002影响,对其进行回归分析,结果如图5所示。<0.002 mm团粒含量和ER<0.002与秸秆覆盖量之间均存在显著的二次函数关系,且均随着秸秆覆盖量的增大呈先增大后减少的趋势,大部分情况下在秸秆覆盖量为0.2 kg/m2时达到最大值,分别为4.995和0.471。
表 3 不同坡度和秸秆覆盖量下各粒级侵蚀泥沙团粒及富集率相关关系Table 3. Correlation between sediment aggregates and enrichment rates of each particles grade under different slope and straw mulch amount影响因素
Influence factor中值粒径
Median
diameter<0.002 mm 0.002~
0.05 mm0.05~
2 mmER<0.002 ER0.002~0.05 ER0.05~2 坡度
Slope gradient0.039 0.037 −0.146 0.133 0.037 −0.137 0.138 秸秆覆盖量
Straw mulch
amount−0.132 −0.624** 0.333 −0.214 −0.624** 0.344 −0.237 注:*表示在0.05水平上显著,**表示在0.01水平上显著。 Note: * means significant at 0.05 level,** means significant at 0.01 level. 3. 讨 论
图2表明,随着降雨历时的增加<0.002 mm团粒含量基本保持不变,是因为在本研究中<0.002 mm团粒含量占比较小,坡面产流在短时间内趋于稳定,径流动能保持不变,团粒破碎释放黏粒的速度与黏粒被消耗的速度达到平衡。同时黏粒在侵蚀搬运过程中,会发生絮凝和再团聚[28-29]过程。0.002~0.05 mm团粒含量随降雨历时增加逐渐减少,这与吴凤至等[19]研究结果不尽一致,一方面可能是随降雨历时增加坡面没有足够的可供径流搬运的土壤团粒,表现为“供给限制”;另一方面吴凤至等研究的是分散后的土壤团粒,其侵蚀泥沙中的团粒分布与本研究不同。但与源土壤机械组成相比,0.002~0.05 mm团粒含量增加,这与张德谦等[20]研究结果相似,即侵蚀泥沙比供试土壤团粒更细[30-31]。研究表明[30],当土壤中的粉粒含量>33%时,侵蚀泥沙中的粉粒占主要部分。0.05~2 mm团粒含量随降雨历时增加是由于秸秆覆盖条件下降雨初期坡面径流主要为缓层流和缓过渡流,单位面积内秸秆数量越多,增阻作用越强[8]。因此径流只能搬运一部分沙粒[32],而坡面仍存在足够的可搬运沙粒,随降雨历时的增加水流流速与初始流速相比可增加100%[33],导致径流搬运能力增强,此时侵蚀泥沙中的沙粒含量主要受到“搬运限制”。同时在细沟侵蚀阶段,砂粒表面的细团粒也会被剥离[15],造成以砂粒形式存在的团粒含量增多。
在各坡度下秸秆覆盖量为0.8 kg/m2时<0.002 mm团粒含量显著低于其他秸秆覆盖量条件(图3a),与SHI等[34]人研究结果一致,主要归因于0.8 kg/m2秸秆量将地表完全覆盖,形成秸秆覆盖层[35],溅蚀的影响可以忽略不计,径流量减少使得黏粒侵蚀量减少。15°坡面时,<0.002 和0.05~2 mm团粒含量在0.2 kg/m2覆盖量条件下均显著高于其他秸秆覆盖量条件(图3b),而0.002~0.05 mm团粒含量则相反(图3c)。因为水蚀过程中团聚体破碎的机制主要是水化崩解和机械破碎,当秸秆覆盖量较低时,土壤中团聚体会被动能较大的雨滴撞击而破碎。并且土壤团聚体抗剪强度会随土壤水分变化,在低秸秆覆盖量下,土壤水分增加速率变大,土壤团聚体的抗剪强度降低[36],表现出黏粒和砂粒含量在低秸秆覆盖量下显著高于高秸秆覆盖量。粉粒变化规律相反则因为流速的降低促进粉粒的沉积,随着秸秆覆盖量的增加雨滴对表层土壤的溅蚀减少,使表层土壤疏松而增加入渗,短时间高强度降雨带来的水分被表层土壤充分固定[37],同时路径的弯曲度和摩擦系数也会增加而造成径流流速降低[35]。
图4表明除20°坡面0.8 kg/m2覆盖量条件,各坡度下0.2 kg/m2秸秆覆盖量的中值粒径含量均显著高于其他秸秆覆盖量。研究表明下垫面条件会显著影响侵蚀泥沙的分选过程[18],而秸秆覆盖可以显著改变地表糙度,当在较低秸秆覆盖量的条件下时,坡度能够提供水流动力,较低秸秆覆盖量却无法形成有效的保护层防止溅蚀而使得中值粒径含量增加。也有研究得出秸秆覆盖量过高会促进土壤流失,因为随着秸秆覆盖量的增加,秸秆逐渐在地表形成保护层,地表在降雨过程中无法形成表面结皮,而铺在地表的秸秆又起到分流和集中地表径流作用,高秸秆覆盖量可能会比低秸秆覆盖量更早地产生细沟侵蚀[38],从而增加土壤流失量,导致在20°和0.8 kg/m2覆盖量条件下,中值粒径含量增加。
泥沙颗粒富集率量化侵蚀分选性强弱的良好指标。研究表明[30],当源土壤中粉粒含量达到一定范围后,在侵蚀过程中更易于富集。本研究各坡度和秸秆覆盖量下,ER0.002~0.05>1说明在整个降雨侵蚀过程中粉粒容易被侵蚀并发生富集,表明本试验条件下的坡面侵蚀过程优先分离搬运细颗粒,这与郭凯等[14]研究结果相似。一方面因为土壤质地,源土壤组成粉粒含量较高为粉粒的流失和富集提供了物质来源;另一方面秸秆覆盖量增加,降雨透过秸秆到达坡面土壤的时间延长[39],延缓了产流时间,促进坡面水流的入渗[40],在短时间内径流动能降低,大颗粒无法被分离搬运,使得大量的粉粒被侵蚀并发生富集,同时也导致了ER0.002~0.05差异性变化呈现低秸秆覆盖量显著低于高秸秆覆盖量。而各坡度下0.2 kg/m2秸秆覆盖量的ER0.002~0.05均低于0 kg/m2,可能是因为低秸秆覆盖量,既使得裸露土壤团聚体被动能较高的雨滴快速破坏,形成更多的微团聚体颗粒在土壤表层形成结皮而降低侵蚀强度[41-42],又起到延长降雨在地表的滞留时间和降低水流冲刷力的作用。不同覆盖量下ER<0.002差异性变化表现出0.6 kg/m2和0.8 kg/m2秸秆覆盖量时显著低于另外3个秸秆覆盖量,整体随秸秆覆盖量的增加呈减少趋势,这是因为横向覆盖秸秆会形成微坝,降低流速。细沟形成后,横向秸秆插入土壤会产生更高的径流阻力,研究发现,细沟中的秸秆可使流速降低19.55%~21.88%[43]。ER0.05~2在0.2 kg/m2秸秆覆盖量时显著高于另外4个秸秆覆盖量,则因为在秸秆覆盖条件下,坡面流具有较大的水深[5],但当坡面水流的深度超过覆盖物时,适当的覆盖则会减少坡面阻力,增加水流动能[44],使0.05~2 mm团粒更易被侵蚀。
随着坡度增加,侵蚀泥沙中的黏粒含量减少而砂粒含量增加[29],但本研究中各粒径团粒含量和富集率随坡度的变化在各秸秆覆盖量下差异性各不相同,这可能是流速和坡面阻力相互作用的结果。因为坡度直接影响水流流速,覆盖层内有复杂多变的过水通道,不同秸秆覆盖量下内部水流流态比地表与覆盖层之间的水流复杂[37],秸秆交错纵横的内部结构对水流的穿梭绕行会产生更大的影响,导致不同秸秆覆盖量下流速变化复杂,同时秸秆的囊泡结构和表面张力也会吸附颗粒[45],而且秸秆覆盖条件下并不是坡度越大增阻效果越大[8]。坡度较大时,秸秆与坡面之间的摩擦力较小,秸秆与坡面交界处容易被径流冲刷发生位移和转向,从而对坡面流起到导流作用,阻力系数反而较小。由于黏粒具有较大的比表面积,是土壤污染物和养分的重要载体[46],本研究结果表明在紫色土坡耕地采取秸秆覆盖措施有利于减少黏粒在侵蚀过程中的流失,一定程度上缓解土地肥力的下降,避免土壤污染物进入水体污染水源。秸秆施用量大于0.4 kg/m2时能有效降低黏粒的流失,研究结果为紫色土区合理配施秸秆覆盖及面源污染防治提供科学依据。
4. 结 论
1)秸秆覆盖条件下随降雨历时增加各粒级团粒呈现不同的流失规律,<0.002 mm团粒含量基本保持不变,0.002~0.05 mm团粒含量呈逐渐下降趋势,降低幅度最大达56.87%,0.05~2 mm团粒含量上升趋势,最大由19.79%增加到45.96%。
2)秸秆覆盖可显著影响各粒级侵蚀泥沙团粒含量。当坡度一定时,0.2 kg/m2秸秆覆盖量下<0.002 、0.05~2 mm和中值粒径团粒含量均显著高于其他秸秆覆盖量条件,而0.002~0.05 mm团粒含量则相反。在秸秆覆盖量达到0.8 kg/m2时中值粒径含量不减反增。
3)秸秆覆盖显著影响坡面泥沙分选,各坡度和秸秆覆盖量条件下,只有ER0.002~0.05均大于1,表明侵蚀过程中粉粒发生富集。结果表明秸秆覆盖下紫色土坡耕地侵蚀中优先搬运细颗粒。
4)回归分析表明<0.002 mm侵蚀泥沙团粒含量及富集率与秸秆覆盖量间存在极显著二次函数关系(P<0.01),大部分在秸秆覆盖量为0.2 kg/m2时达到最大值,秸秆施用量大于0.4 kg/m2时可有效降低黏粒的流失。因此建议在紫色土区采用秸秆覆盖措施时应大于0.4 kg/m2。
综上,秸秆覆盖对紫色土坡耕地侵蚀泥沙具有明显分选作用,可以有效减少紫色土坡耕地侵蚀泥沙中的黏粒含量,为该区域面源污染防治提供有效技术手段。但本研究仍存在一定局限性,0.4~0.8 kg/m2之间存在最适秸秆覆盖量,未来可进一步细分坡度与秸秆覆盖量组合以获得紫色土区秸秆覆盖的最佳组合模式。
-
图 3 不同粒级侵蚀泥沙团粒含量变化特征
注:不同大写字母表示同一秸秆覆盖量下不同坡度差异显著(P<0.05),不同小写字母表示同一坡度下不同秸秆覆盖量差异显著(P<0.05)。下同。
Figure 3. Change characteristics of the eroded sediment aggregate content with different particle sizes
Note: Different capital letters indicate significant difference in different slope under the same straw mulch amount (P<0.05), while different lowercase letters indicate significant differences in different straw mulch amount under the same slope (P<0.05). Same below.
表 1 供试土壤基本性质
Table 1 Basic properties of tested soil
土壤团粒组成
Soil mechanical composition/%容重
Bulk density/
(g·cm−3)有机质
Organic matter
content/(g·kg−1)pH值
pH
value<0.002 mm 0.002~0.05 mm 0.05~2 mm 10.58±0.32 35.22±1.42 54.2±1.1 1.20±0.03 3.89±0.12 8.16 表 2 不同坡度和秸秆覆盖量下各粒级侵蚀泥沙团粒富集率
Table 2 Aggregate enrichment rates of eroded sediment at different particles levels under different slope and straw mulch amount
坡度
Slope gradient/(°)秸秆覆盖量
Straw mulch amounts/(kg·m−2)各粒级侵蚀泥沙富集率
Sediment enrichment rate of each particles levelER<0.002 ER0.002~0.05 ER0.05~2 10 0 0.48±0.03Bb 1.68±0.17Bb 0.66±0.10ABb 0.2 0.52±0.03Ba 1.37±0.24Bc 0.84±0.10Aa 0.4 0.54±0.08Aa 1.71±0.24Aab 0.63±0.15Ab 0.6 0.26±0.02Cc 1.79±0.16Bab 0.63±0.10Ab 0.8 0.27±0.03Bc 1.84±0.19Aa 0.59±0.11Bb 15 0 0.51±0.06Ab 1.81±0.14Aa 0.51±0.18Bc 0.2 0.58±0.01Aa 1.36±0.24Bc 0.79±0.12ABa 0.4 0.51±0.02Bb 1.77±0.11Aab 0.59±0.07Abc 0.6 0.37±0.10Bc 1.89±0.16Aa 0.54±0.10Bbc 0.8 0.35±0.05Ac 1.68±0.26Ab 0.60±0.16Bb 20 0 0.45±0.05Bc 1.62±0.09Ba 0.70±0.06Ab 0.2 0.39±0.16Cc 1.53±0.12Ab 0.77±0.07Ba 0.4 0.50±0.14ABa 1.68±0.11Aa 0.65±0.07Ac 0.6 0.49±0.03Ab 1.69±0.09Ca 0.62±0.09Ac 0.8 0.20±0.06Cd 1.60±0.12Bab 0.76±0.09Aab 注:表中数据均为平均值±标准差。 Note: All data in the table are mean ± standard deviation. 表 3 不同坡度和秸秆覆盖量下各粒级侵蚀泥沙团粒及富集率相关关系
Table 3 Correlation between sediment aggregates and enrichment rates of each particles grade under different slope and straw mulch amount
影响因素
Influence factor中值粒径
Median
diameter<0.002 mm 0.002~
0.05 mm0.05~
2 mmER<0.002 ER0.002~0.05 ER0.05~2 坡度
Slope gradient0.039 0.037 −0.146 0.133 0.037 −0.137 0.138 秸秆覆盖量
Straw mulch
amount−0.132 −0.624** 0.333 −0.214 −0.624** 0.344 −0.237 注:*表示在0.05水平上显著,**表示在0.01水平上显著。 Note: * means significant at 0.05 level,** means significant at 0.01 level. -
[1] 苏正安,熊东红,张建辉,等. 紫色土坡耕地土壤侵蚀及其防治措施研究进展[J]. 中国水土保持,2018(2):42-47,69. DOI: 10.3969/j.issn.1000-0941.2018.02.016 SU Zhengan, XIONG Donghong, ZHANG Jianhui, et al. Research progress of soil erosion of purple soil slope farmland and its prevention and control measures[J]. Soil and Water Conservation in China, 2018(2): 42-47, 69. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0941.2018.02.016
[2] XIA R, SHI D M, NI S H, et al. Effects of soil erosion and soil amendment on soil aggregate stability in the cultivated-layer of sloping farmland in the Three Gorges Reservoir area[J]. Soil and Tillage Research, 2022, 223: 105447.
[3] 李天阳,何丙辉,张海香,等. 典型农作措施对沙溪庙组壤质紫色土坡耕地径流氮流失的影响[J]. 生态学报,2023,43(10):3894-3905. LI Tianyang, HE Binghui, ZHANG Haixiang, et al. Effects of representative agricultural measures on runoff nitrogen loss in loamy purple sloping croplands originating from Shaximiao Group[J]. Acta Ecologica Sinica, 2023, 43(10): 3894-3905. (in Chinese with English abstract)
[4] 张光辉,杨扬,刘瑛娜,等. 秸秆还田阻控黑土侵蚀机理及效应[J]. 土壤与作物,2022,11(2):115-128. ZHANG Guanghui, YANG Yang, LIU Yingna, et al. Mechanisms and benefits of straw return in mitigating black soil erosion[J]. Soils and Crops, 2022, 11(2): 115-128. (in Chinese with English abstract)
[5] 李朝栋,李占斌,马建业,等. 不同长度小麦秸秆覆盖下黄土坡面流水动力学特性[J]. 农业工程学报,2017,33(4):153-160. DOI: 10.11975/j.issn.1002-6819.2017.04.022 LI Chaodong, LI Zhanbin, MA Jianye, et al. Hydraulic characteristic of overland flow on loess farmland slope under mulch with different wheat straw lengths[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(4): 153-160. (in Chinese with English abstract) DOI: 10.11975/j.issn.1002-6819.2017.04.022
[6] 刘燕青,王计磊,李子忠. 秸秆覆盖对土壤水分和侵蚀的影响研究进展[J]. 水土保持研究,2021,28(6):429-436. LIU Yanqing, WANG Jilei, LI Zizhong. Research process on the effects of straw mulch on soil moisture and soil erosion[J]. Research of Soil and Water Conservation, 2021, 28(6): 429-436. (in Chinese with English abstract)
[7] 潘焰菲,高泽超,徐勤学,等. 玉米秸秆覆盖对喀斯特坡耕地产流产沙过程的影响[J]. 中国水土保持,2023(3):20-24. DOI: 10.3969/j.issn.1000-0941.2023.03.008 [8] 李桂,曹文华,马建业,等. 小麦秸秆覆盖量对坡面流水动力学特性影响[J]. 农业工程学报,2023,39(1):108-116. DOI: 10.11975/j.issn.1002-6819.202207186 LI Gui, CAO Wenhua, MA Jianye, et al. Effect of wheat straw mulch on slope hydrodynamic characteristics[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(1): 108-116. (in Chinese with English abstract) DOI: 10.11975/j.issn.1002-6819.202207186
[9] 严坤,王玉宽,徐佩,等. 秸秆覆盖对三峡库区坡面侵蚀的影响[J]. 水土保持通报,2016,36(1):6-10. YAN Kun, WANG Yukuan, XU Pei, et al. Effects of mulch cover on slope erosion in Three Gorges Reservoir area[J]. Bulletin of Soil and Water Conservation, 2016, 36(1): 6-10. (in Chinese with English abstract)
[10] 徐露,张丹,向宇国,等. 不同耕作措施下金沙江下游紫色土区坡耕地产流产沙特征[J]. 山地学报,2020,38(6):851-860. XU Lu, ZHANG Dan, XIANG Yuguo, et al. Runoff and sediment yield of sloping farmland in purple soil area of the lower Jinsha River under different tillage measures[J]. Mountain Research, 2020, 38(6): 851-860. (in Chinese with English abstract)
[11] 黄新君,陈尚洪,刘定辉,等. 秸秆覆盖和有机质输入对紫色土土壤可蚀性的影响[J]. 中国农业气象,2016,37(3):289-296. DOI: 10.3969/j.issn.1000-6362.2016.03.004 HUANG Xinjun, CHEN Shanghong, LIU Dinghui, et al. Combined effects of straw mulch cover & organic matter input on the erodibility of purple soil in sloping farmland[J]. Chinese Journal of Agrometeorology, 2016, 37(3): 289-296. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-6362.2016.03.004
[12] 任涛,贺宇欣,张鹏,等. 秸秆移除对西南山丘区紫色土抗侵蚀能力的影响[J]. 灌溉排水学报,2020,39(5):82-88. REN Tao, HE Yuxin, ZHANG Peng, et al. The resistance of purple soil against erosion depends on straw removal rate in the hilly regions in southwest China[J]. Journal of Irrigation and Drainage, 2020, 39(5): 82-88. (in Chinese with English abstract)
[13] 张晨阳,杨伟,汪零,等. 基于REE示踪对红壤细沟间侵蚀团聚体周转和泥沙迁移特征的研究[J]. 土壤学报,2024,61(6):1492-1505. ZHANG Chenyang, YANG Wei, WANG Ling, et al. Characteristics of aggregate turnover and sediment transport by interrill erosion using Rare Earth Elements in red soil[J]. Acta Pedologica Sinica, 2024, 61(6): 1492-1505. (in Chinese with English abstract)
[14] 郭凯,李玄添,张风宝,等. 雨型和坡长对侵蚀泥沙粒径特征的影响[J]. 水土保持研究,2023,30(2):50-57 GUO Kai, LI Xuantian, ZHANG Fengbao, et al. The influence of rainfall patterns and slope lengths on the characteristics of eroded sediment particle sizes[J]. Research of Soil and Water Conservation, 2023, 30(2): 50-57. (in Chinese with English abstract)
[15] 蒋倩,郑子成,王永东,等. 紫色土坡面细沟侵蚀过程中泥沙团粒特性[J]. 农业工程学报,2022,38(Supp.):114-121. JIANG Qian, ZHENG Zicheng, WANG Yongdong, et al. Characteristics of sediment particles during rill erosion on purple soil slope[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(Supp.): 114-121. (in Chinesewith English abstract)
[16] 吴新亮,魏玉杰,李朝霞,等. 亚热带地区几种红壤坡面侵蚀泥沙的物质组成特性[J]. 土壤学报,2014,51(6):1223-1233. WU Xinliang, WEI Yujie, LI Zhaoxia, et al. Composition of sediments of erosion from different red soil slopes in subtropical area[J]. Acta Pedologica Sinica, 2014, 51(6): 1223-1233. (in Chinese with English abstract)
[17] 贺云锋,沈海鸥,张月,等. 黑土区坡耕地不同秸秆还田方式的水土保持效果分析[J]. 水土保持学报,2020,34(6):89-94. HE Yunfeng, SHEN Haiou, ZHANG Yue, et al. Analysis of soil and water conservation effects of different straw returning patterns in sloping farmland in the Chinese black soil region[J]. Journal of Soil and Water Conservation, 2020, 34(6): 89-94. (in Chinese with English abstract)
[18] 沈子雅,程金花,管凝,等. 模拟降雨条件下灌草配置对坡面侵蚀泥沙团粒分布的影响[J]. 农业工程学报,2022,38(11):125-133. DOI: 10.11975/j.issn.1002-6819.2022.11.014 SHEN Ziya, CHENG Jinhua, GUAN Ning, et al. Effects of shrub-herb arrangements on the distribution of sediment particles eroded from slopes under simulated rainfall conditions[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(11): 125-133. (in Chinese with English abstract) DOI: 10.11975/j.issn.1002-6819.2022.11.014
[19] 吴凤至,史志华,岳本江,等. 坡面侵蚀过程中泥沙团粒特性研究[J]. 土壤学报,2012,49(6):1235-1240. WU Fengzhi, SHI Zhihua, YUE Benjiang, et al. Particle characteristics of sediment in erosion on hillslope[J]. Acta Pedologica Sinica, 2012, 49(6): 1235-1240. (in Chinese with English abstract)
[20] 张德谦,倪世民,王军光,等. 不同侵蚀程度花岗岩红壤坡面侵蚀泥沙团粒特征研究[J]. 土壤学报,2020,57(6):1387-1398. ZHANG Deqian, NI Shimin, WANG Junguang, et al. Particle-size composition of erosion sediment on granite-derived red soil slope relative to erosion degree[J]. Acta Pedologica Sinica, 2020, 57(6): 1387-1398. (in Chinese with English abstract)
[21] 杨青松,倪世民,王军光,等. 粗团粒土壤坡面侵蚀泥沙团粒特征[J]. 水土保持学报,2022,36(4):30-36. YANG Qingsong, NI Shimin, WANG Junguang, et al. Characteristics of erosion and sediment particles on coarse texture soil slope[J]. Journal of Soil and Water Conservation, 2022, 36(4): 30-36. (in Chinese with English abstract)
[22] 牟廷森,沈海鸥,王东丽,等. 玉米秸秆粉碎还田对黑土坡面土壤侵蚀特征的影响[J]. 水土保持学报,2022,36(2):78-83,91. MOU Tingsen, SHEN Haiou, WANG Dongli, et al. Effects of crushed corn straw returning on soil erosion characteristics at the black soil hillslopes[J]. Journal of Soil and Water Conservation, 2022, 36(2): 78-83, 91. (in Chinese with English abstract)
[23] 曾建辉,李占斌,马波,等. 小麦秸秆长度、覆盖量对坡面产流产沙的影响[J]. 水土保持学报,2020,34(4):98-103,111. ZENG Jianhui, LI Zhanbin, MA Bo, et al. Effects of wheat straw length and coverage on runoff and sediment yield[J]. Journal of Soil and Water Conservation, 2020, 34(4): 98-103, 111. (in Chinese with English abstract)
[24] 唐涛,郝明德,单凤霞. 人工降雨条件下秸秆覆盖减少水土流失的效应研究[J]. 水土保持研究,2008(1):9-11,40. TANG Tao, HAO Mingde, SHAN Fengxia. Effects of straw mulch application on water loss and soil erosion under simulated rainfall[J]. Research of Soil and Water Conservation, 2008(1): 9-11, 40. (in Chinese with English abstract)
[25] RANAIVOSON L, NAUDIN K, RIPOCHE A, et al. Agro-ecological functions of crop residues under conservation agriculture. A review[J]. Agronomy For Sustainable Development, 2017, 37(4): 26.
[26] 唐永兰,徐桂荣,王晓芳,等. 1992—2021年三峡库区夏季小时强降水时空分布特征[J]. 干旱气象,2023,41(4):589-598. DOI: 10.11755/j.issn.1006-7639(2023)-04-0589 TANG Yonglan, XU Guirong, WANG Xiaofang, et al. Spatio-temporal distribution characteristics of summer hourly heavy rainfall in the Three Gorges Reservoir area from 1992 to 2021[J]. Journal of Arid Meteorology, 2023, 41(4): 589-598. (in Chinese with English abstract) DOI: 10.11755/j.issn.1006-7639(2023)-04-0589
[27] 艾婉秀,赵珊珊,陈鲜艳,等. 1961—2020年三峡库区极端降水的变化特征研究[J]. 长江流域资源与环境,2024,33(3):625-633. AI Wanxiu, ZHAO Shanshan, CHEN Xianyan, et al. Characteristics of extreme precipitation in the Three Gorges Reservoir region during 1961—2020[J]. Resources and Environment in the Yangtze Basin, 2024, 33(3): 625-633. (in Chinese with English abstract)
[28] 肖海,王地,夏振尧,等. 植物篱对紫色土坡面侵蚀泥沙粒径分布特征的影响[J]. 农业工程学报,2023,39(19):58-66. DOI: 10.11975/j.issn.1002-6819.202305235 XIAO Hai, WANG Di, XIA Zhenyao, et al. Influence of hedgerows on the particle size distribution of eroded sediment on purple soil slope[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(19): 58-66. (in Chinese with English abstract) DOI: 10.11975/j.issn.1002-6819.202305235
[29] 朱方方,程金花,王书韬,等. 湖北低山丘陵区侵蚀泥沙团粒特征及其与地形因子的关系[J]. 水土保持学报,2021,35(4):27-33. ZHU Fangfang, CHENG Jinhua, WANG Shutao, et al. Characteristics of eroded sediment particles and their relationship with topographical factors in the low mountain and hilly area of Hubei Province[J]. Journal of Soil and Water Conservation, 2021, 35(4): 27-33. (in Chinese with English abstract)
[30] YOUNG R. Characteristics of eroded sediment[J]. Transactions of The Asae, 1980, 23(5): 1139.
[31] 汪零,吴文枭,倪世民,等. 溅蚀过程中红壤团聚体周转路径的定量表征[J]. 农业工程学报,2022,38(8):115-123. DOI: 10.11975/j.issn.1002-6819.2022.08.014 WANG Ling, WU Wenxiao, NI Shimin, et al. Quantitative characterization of the turnover path of red soil aggregate in the splash process[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(8): 115-123. (in Chinese with English abstract) DOI: 10.11975/j.issn.1002-6819.2022.08.014
[32] 张翼夫,李洪文,何进,等. 玉米秸秆覆盖对坡面产流产沙过程的影响[J]. 农业工程学报,2015,31(7):118-124. ZHANG Yifu, LI Hongwen, HE Jin, et al. Effects of maize straw mulching on runoff and sediment process of slope[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(7): 118-124. (in Chinese with English abstract)
[33] 王伟,陈杨,庄晓晖,等. 极端降雨条件下秸秆覆盖坡面水流流速空间分布[J]. 农业工程学报,2022,38(2):149-156. WANG Wei, CHEN Yang, ZHUANG Xiaohui, et al. Spatial distribution of overland flow velocity along straw-mulched slope under extreme rainfall[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(2): 149-156. (in Chinese with English abstract)
[34] SHI Z H, YUE B J, WANG L, et al. Effects of mulch cover rate on interrill erosion processes and the size selectivity of eroded sediment on steep slopes[J]. Soil Science Society of America Journal, 2013, 77(1): 257-267. DOI: 10.2136/sssaj2012.0273
[35] GHOLAMI L, SADEGHI S H, HOMAEE M. Straw mulching effect on splash erosion, runoff, and sediment yield from eroded plots[J]. Soil Science Society of America Journal, 2013, 77(1): 268-278. DOI: 10.2136/sssaj2012.0271
[36] YANG L Y, DUAN J, PENG L, et al. Effects of straw mulching on near-Surface hydrological process and soil loss in slope farmland of red soil[J]. Water, 2022, 14(21): 3388.
[37] 庄晓晖,马玉莹. 降雨条件下秸秆覆盖坡面流水动力过程研究[J]. 中国农村水利水电,2023(7):147-152. DOI: 10.12396/znsd.221721 ZHUANG Xiaohui, MA Yuying. The flow velocity of loess slope with straw mulching under rainfall conditions[J]. China Rural Water and Hydropower, 2023(7): 147-152. (in Chinese with English abstract) DOI: 10.12396/znsd.221721
[38] RAHMA A, WANG W, TANG Z, et al. Straw mulch can induce greater soil losses from loess slopes than no mulch under extreme rainfall conditions[J]. Agricultural and Forest Meteorology, 2017, 232: 141-151. DOI: 10.1016/j.agrformet.2016.07.015
[39] 徐勤学,朱晓锋,方荣杰,等. 秸秆覆盖对岩溶区坡耕地产流产沙的影响[J]. 水土保持学报,2017,31(2):22-26,32. XU Qinxue, ZHU Xiaofeng, FANG Rongjie, et al. The influence of corn straw mulching on the processes of runoff and sediment yield in the sloping farmland of the Karst area[J]. Journal of Soil and Water Conservation, 2017, 31(2): 22-26, 32. (in Chinese with English abstract)
[40] 张翼夫,王庆杰,胡红,等. 华北玉米秸秆覆盖对砂土、壤土水土保持效应的影响[J]. 农业机械学报,2016,47(5):138-145,154. ZHANG Yifu, WANG Qingjie, HU Hong, et al. Effect of maize straw mulching on water and soil conservation in sandy soil and loam soil of north China[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(5): 138-145, 154. (in Chinese with English abstract)
[41] 王子轩,吴发启. 模拟降雨条件下坡度对关中地区塿土溅蚀的影响[J]. 土壤学报,2021,58(6):1416-1422. DOI: 10.11766/trxb202003130116 WANG Zixuan, WU Faqi. Influence of slope on splash erosion of Lou soil in Guanzhong area under simulated rainfall[J]. Acta Pedologica Sinica, 2021, 58(6): 1416-1422. (in Chinese with English abstract) DOI: 10.11766/trxb202003130116
[42] 张晓茹,刘志强,焦钒栩,等. 雨滴击溅下表土孔隙变化及其对入渗能力的影响[J]. 土壤,2024,56(3):601-609. ZHANG Xiaoru, LIU Zhiqiang, JIAO Fanxu, et al. Topsoil pore change under raindrop splashing and its effect on soil infiltration[J]. Soils, 2024, 56(3): 601-609. (in Chinese with English abstract)
[43] MA J, MA B, WANG C, et al. Wheat straw reduces runoff, sediment yield and flow velocity in sloping farmland under two straw mulching methods[J]. Plant and Soil, 2023, 483(1-2): 721.
[44] SAMANI A N, WASSON R J, RAHDARI M R, et al. Quantifying eroding head cut detachment through flume experiments and hydraulic thresholds analysis[J]. Environmental Earth Sciences, 2016, 75(21): 1424.
[45] SHI H Q, ZHENG F L, ZHAO T, et al. Impacts of straw mulching in longitudinal furrows on hillslope soil erosion and deposition in the Chinese Mollisol region[J]. Soil and Tillage Research, 2024, 243(000): 11.
[46] 周梦玲,郭建斌,崔明,等. 喀斯特坡地侵蚀泥沙养分流失与粒径分布的关系[J]. 水土保持学报,2019,33(6):54-60,71. ZHOU Mengling, GUO Jianbin, CUI Ming, et al. Relationship between nutrient loss and particle size distribution in eroded sediment of Karst slope[J]. Journal of Soil and Water Conservation, 2019, 33(6): 54-60, 71. (in Chinese with English abstract)