Design and Testing of Rotary Seedling Tray Conveying Device for Oilseed Rape Seedling Transplanting Machine
-
摘要:
针对现有穴盘苗自动取苗作业效果极易受钵体自身强度以及盘钵间黏附力的影响,导致钵体破损率高、取苗成功率低的问题,该研究提出一种回转式送盘方法,通过改变苗盘形态实现在送盘阶段减小盘钵间黏附力,使得钵苗更容易从苗盘中取出。对油菜钵苗的力学特性进行了测试,探究了含水率对颗粒粘结力和盘钵黏附力的作用机理,建立了苗盘在回转弯曲过程中钵体的力学模型,并对送盘装置进行了结构设计、装置试制与试验优化。搭建试验台架,以“湘作油207”苗龄为40 d穴盘苗为研究对象,以基质含水率、回转半径和折弯角度为影响因素,以钵体破损率和脱盘力变化率为评价指标开展正交试验。试验结果表明,优选组合为基质含水率(50±1)%、回转半径113 mm、折弯角度55°,此参数组合条件下钵体破损率为2.01%,脱盘力变化率为21.08%。基于优选参数组合进行重复性验证试验,结果表明,平均钵体破损率为2.24%、平均脱盘力变化率为20.57%。田间试验的平均取苗成功率为96.75%,相较于现有移栽机提升3.70~6.01个百分点。该研究可为钵苗全自动移栽机的研发提供参考。
Abstract:This study focused on the design and testing of a rotary seedling tray conveying device to resolve critical challenges in oilseed rape transplanting, such as high pot damage rates and difficulties in separating seedling plugs from their trays. The research proposed an innovative rotary feeding mechanism aimed at reducing the adhesive forces between seedling plugs and tray walls, thereby improving the efficiency and reliability of the transplanting process. The device was specifically designed to minimize damage to the seedling structure while maintaining high retrieval success rates. The mechanical behavior of seedling plugs was investigated to understand the forces influencing their integrity during the separation process. Internal forces, including cohesion between substrate particles and root-soil binding, were analyzed alongside external forces such as friction and adhesion between the seedling plug and tray walls. A rotary bending approach was introduced, wherein the trays were bent along specific trajectories to expand the openings at the top while compressing the bottom. This deformation reduced the contact area and adhesion forces, enabling easy separation of the plugs without structural failure. The theoretical model provided the basis for optimizing the bending radius, angle, and other critical parameters. The rotary seedling tray conveying device comprised key components, including a seedling tray frame, a chain conveyor system, transmission mechanisms, and seedling protection rails. The conveyor system used a servo motor to provide intermittent motion, driving the trays along a curved path. As the trays moved through predefined bending segments, controlled deformation was applied at specific angles and radii, significantly reducing adhesive forces. Extensive experiments were conducted to evaluate and optimize the device’s performance. The tests focused on three critical factors: substrate moisture content, rotary radius, and bending angle. These parameters were systematically varied to determine their effects on pot damage rates and detachment force reduction. Orthogonal experiments were performed using 40-day-old oilseed rape seedlings with substrate moisture contents of (50±1)%, (55±1)%, and (60±1)%; rotational radius of 58, 113, and 168 mm; and bending angles of 35°, 55°, and 75°. The results indicated that a substrate moisture content of (50±1)%, a rotary radius of 113 mm, and a bending angle of 55° provided the optimal configuration, achieving a pot damage rate of 2.01% and a detachment force reduction rate of 21.08%. Field trials validated the device’s effectiveness under real-world conditions. These trials measured critical metrics such as seedling retrieval success rates during operation at a working speed of 0.4 m/s. The results showed an average retrieval success rate of 96.75%, compared to 3.70 to 6.01% improvement compared to existing transplanters. However, field trials also identified potential improvements, such as mitigating vibration-induced errors and addressing occasional interference caused by overlapping seedling stems. The rotary seedling tray conveying device demonstrated significant advancements in addressing the limitations of traditional seedling transplanting machines. By employing rotary bending to reduce adhesion forces, the device ensured precise and efficient plug separation without compromising structural integrity. This design enhances the reliability and efficiency of automated transplanting systems, reducing labor dependency and improving agricultural productivity. Furthermore, the research provides valuable guidelines for developing transplanting technologies for other crops with similar requirements for plug separation.
-
0. 引 言
育苗移栽是油菜的重要种植模式之一,能够缓解作物茬口矛盾、提高土地复种率与作物单产[1-2]。我国油菜移栽主要以人工投苗的半自动移栽为主,劳动强度大,作业效率低[3-4]。因此,开发全自动油菜移栽机的需求十分迫切,取苗、送盘装置作为全自动油菜移栽机的关键部件,具有重要的研发意义[5-6]。
目前,国内外学者对夹茎式[7-8]、插入式[9]、顶出式[10]、气力式[11]和组合式[12]等取苗装置进行了大量研究,主要通过对取苗装置的机械结构和运动轨迹进行优化来提升取苗质量。然而,送盘装置的送盘准确性同样是影响取苗质量的重要因素之一。送盘装置按照苗盘运动方向不同可分为纵向输送[13-14]和横向输送[15],按照结构不同可分为水平式[16]和倾斜式[17-18]。国外对送盘装置研究较早,普遍利用电机传动控制苗盘进给,并搭配传感器对苗盘位置进行定位。英国Pearson公司生产的Mark5型牵引式移栽机[19],其针对硬质塑料苗盘设计了一种水平式纵向送盘装置,使用电机驱动同步带进行苗盘输送,并通过光电传感器识别苗盘进行定位。意大利Ferrari公司开发的Futura全自动移栽机[20],其针对硬质泡沫苗盘设计了一种倾斜式横向送盘装置,利用机器视觉定位苗盘位置,但对于振动较敏感且价格昂贵。近年来国内学者也对移栽机送盘装置开展了相关研究,孔德航等[21]设计了一种水平式纵向送盘装置,利用激光传感器和角度传感器分别获取苗盘的实时位置信息和角度信息,从而实现精准送盘。张妮等[22]设计了一种水平式横向送盘装置,利用限位气缸辅助苗盘定位,实现苗盘按需求逐排进给。那明君等[23]设计了一种倾斜式纵向送盘装置,由棘轮驱动齿轮送盘,通过弹簧作用于顶珠将齿轮定位。文永双等[24]设计了一种倾斜式横向送盘机构,采用梯形仿形杆送盘,消除送盘间隙,并通过闭环控制,消除连续送盘产生的累积误差,实现穴盘精准输送。
上述研究有效改善了输送苗盘位置的准确性,但由于取苗时的机械力直接作用于幼苗根茎或钵体基质,仍会造成盘钵分离时钵体开裂,导致钵体破损率高。针对上述问题,本研究以油菜穴盘苗为研究对象,设计了一种回转式送盘装置,在送盘过程中,让苗盘绕过护苗杆时产生弯曲变形,降低盘钵间黏附力,更有利于夹爪取苗。通过分析并建立回转弯曲状态下的盘钵力学模型,获取影响送盘效果的主要因素,并通过台架试验得到最优参数组合,最后通过田间试验对送盘装置工作性能进行验证,以期为全自动油菜移栽技术研究提供参考。
1. 整机结构与工作原理
1.1 油菜钵苗移栽机整机结构及工作原理
油菜钵苗移栽机结构图如图1所示,主要由送盘装置、取苗装置、收盘装置、苗杯、动力底盘、栽植装置等组成。送盘装置、取苗装置、收盘装置安装于动力底盘上方,各部分通过时序配合完成送盘–取苗–投苗–栽植–回收空盘等作业。
图 1 油菜钵苗移栽机整机结构1. 送盘装置 2. 收盘装置 3. 取苗装置 4. 苗杯 5. 动力底盘 6. 气源 7. 栽植装置 8. 电源Figure 1. Oilseed rape seedling transplanting machine overall structure1. Disk feeding device 2. Disk collecting device 3. Seedling picking device 4. Seedling cup 5. Power chassis 6. Air source 7. Planting device 8. Power supply整机主要作业性能参数见表1。
表 1 整机作业性能参数Table 1. Overall machine operational performance parameters参数
Parameters值
Values作业对象Operating target 油菜钵苗 整机动力Overall machine power/kw 4 作业行数Number of working rows 2 栽植行距Planting row spacing/mm 300~500 栽植株距Planting plant spacing/mm 300~500 最大作业速度Maximum working speed/(m·s−1) 0.37 最大作业效率Maximum working efficiency/(株·h−1) 8000 1.2 回转式送盘装置结构及工作原理
回转式送盘装置主要包括载苗机架、输送机构、传动机构和分苗导轨,如图2所示。其中,输送机构用于输送苗盘,包括分别设置在载苗机架上的送盘链轮、环设在链轮端部两条平行的送盘链条、设置在两条送盘链条之间的送盘杆;送盘链条和送盘杆形成环形输送路径;传动机构包括固定在底座上的伺服电机,伺服电机与链轮连接,用于驱动输送机构转动;分苗导轨包括多根平行且间隔设置的分苗杆和与分苗杆连接的护苗杆。其中分苗杆用于将苗盘中相邻幼苗间隔开,护苗杆是由多根杆件折弯后焊接成型,当苗盘逆时针回转至与地面水平倒置时,由于护苗杆相邻两杆间距小于苗盘穴口宽度,且苗盘穴口与护苗杆处于贴合状态,此时即使在振动状态下也能够阻挡钵苗从苗盘中掉落。
图 2 回转式送盘装置结构1. 送盘链条 2. 送盘杆 3. 送盘链轮 4. 传动链轮 5. 伺服电机 6. 载苗机架 7. 护苗杆 8. 分苗杆 9. 苗盘Figure 2. Rotary seedling tray conveying device structu1. Disk feeding chain 2. Disk feeding rod 3. Disk feeding sprocket 4. Transmission sprocket 5. Servo motor 6. Seedling carrying frame 7. Seedling protection rod 8. Seedling separation rod 9. Seedling tray回转式送盘装置工作原理如图3所示。送盘装置作业时,将带有油菜幼苗的苗盘从入盘侧放置于送盘杆上,伺服电机进行间歇式运动,驱动链轮转动,通过单侧外板链条上送盘杆带动苗盘做间歇运动。
图 3 回转式送盘装置工作原理示意图①.取苗夹爪向前运动至取苗点 ②.苗盘逆时针回转向上运动1格 ③.夹取钵苗茎秆向后运动至苗杯上方 ④.松开夹爪钵苗落入苗杯中Figure 3. Diagram of working principle of rotary seedling tray conveying device①. The seedling gripper claw moves forward to the seedling pot gripping point ②. The seedling tray rotates counterclockwise and moves upward by one step ③. The gripper clamps the seedling stem and moves backward to above the seedling cup ④. The gripper is released, and the seedling falls into the seedling cup苗盘5段运动轨迹依次为:直线段a、曲线段a、直线段b、曲线段b、直线段c。当苗盘经过曲线段a和曲线段b时,产生2次回转弯曲,使送盘杆对苗盘底部造成挤压,此时苗盘中的钵体会产生轻微形变且不破裂,从而让钵体与苗盘间的黏附力大大减小,使钵体与苗盘更易分离。随后,苗盘继续运动至直线段c处,并到达取苗点,此时气缸驱动取苗夹爪夹取钵苗茎秆,一次性取出整排钵苗,并投入接苗杯中。同时,苗盘继续向上运动,使下一排钵苗到达取苗点,继续下一个循环作业。
此外,由于在直线段c处苗盘由下向上运动,所以取苗顺序为自上而下,相较于传统由下到上的取苗方式,有效避免了幼苗在重力作用下向下倾倒而产生的叶片干涉问题。
2. 钵苗力学特性分析
为研究苗盘在回转弯曲过程中的黏附作用机理,减小钵体与苗盘间黏附力影响,探究盘钵分离条件,对钵苗力学模型进行分析。
2.1 常态钵苗力学特性分析
在穴盘苗移栽过程中,取苗作用力可以分为两类。第一类是克服基质颗粒之间的粘结力以及根系与基质的盘根作用力[25],为了方便表达将其称为内部力。内部力保证了钵体的完整性和稳定性,如果内部力不足,钵体在移栽过程中可能会产生破裂或松散,导致基质失效。内部力的大小与基质的粘结强度、根系的抓附能力、基质的含水率等因素密切相关。第二类是克服钵体与苗盘穴壁之间的摩擦力和黏附力[26],为了方便表达将其称为外部力。摩擦力由钵体表面与穴壁的粗糙度决定,黏附力则受基质含水率、苗盘材料等影响。外部力在移栽过程中会对钵体的取出产生阻碍,外部力过大会导致钵体难以顺利取出。若外部力大于内部力,钵体容易发生破损或未能完全取出,从而影响取苗效果。
在苗盘水平放置且未发生任何形变的状态下,钵体内部力学特性如图4a所示。此时假设钵体基质颗粒间的粘结力以及根系对基质的盘根作用力在钵体内部均匀分布,且力的方向均指向钵体中心,以保持钵体的结构完整性[27],内部力Fi满足以下关系:
图 4 常态钵苗力学特性分析注:Fi为内部力,N;Fj为盘钵间黏附力,N;Fl为钵苗拔取力,N;Ff为摩擦力,N;G为钵苗重力,N;α为钵体侧壁与钵体法线方向夹角,(°)。Figure 4. Mechanical properties of normal seedling tray seedlingsNote: Fi is internal force, N ;Fj is the adhesive force between the trays, N ; Fl is the force required to pull the seedling from the plug tray, N; Ff is the frictional force, N ; G is the gravitational force of the seedling, N; α is the angle between the sidewall of the plug tray and the normal direction of the tray, (°).$$ {F_i} = \int_{\text{0}}^V {\left( {\frac{{\partial {\sigma _{ij}}\left( W \right)}}{{\partial {x_j}}} + {\sigma _k}} \right)} {\text{d}}V $$ (1) 式中V为钵体体积,mm3;W为基质含水率,%;σk为盘根作用的单位体积力,N/m3。
钵体外部力如图4b所示,摩擦力Ff的方向平行于穴壁并与钵体提取方向相反,其大小取决于钵体对穴壁的压力和摩擦系数[27]。黏附力Fj的方向垂直于接触面,作用在钵体与穴壁之间,抵抗钵体从穴壁上分离。黏附力的大小与接触面积和材料的黏附强度有关,并同样受基质含水率的影响。外部力Fo满足下列关系:
$$ \left\{ \begin{gathered} {F_o} = \mu G\cos \alpha + A{\sigma _a}{\text{(}}W{\text{)}} \\ {\sigma _a}{\text{(}}W{\text{) = }}{\sigma _0} + aW - b{W^2} \\ \end{gathered} \right. $$ (2) 式中μ为摩擦系数;A为穴壁与钵体的接触面积,mm2;σa(W)为黏附强度,N/m2;σ0为初始黏附强度,N/m2;a、b为含水率对黏附强度影响的经验系数。
综合钵体内部力和外部力的分析可知,钵体受力不仅取决于基质颗粒粘结强度和材料表面特性等固定参数,还受钵体形态和基质含水率的影响。
2.2 回转弯曲钵苗力学特性分析
本文提出的回转式送盘方法是通过将苗盘回转弯曲,从而使穴壁的顶部扩张,底部挤压改变钵体和穴壁之间的接触面积,从而减少钵体和穴壁之间的黏附力,使钵苗更容易从苗盘中取出。回转弯曲钵苗力学特性分析如图5所示。此时钵体受力满足以下关系:
$$ \left\{ \begin{gathered} {F_l} = {F_{fy}} + {F_{jy}} \\ {F_{fy}} = \mu \cos \alpha \left[ {G\sin \left( {\theta + \alpha } \right) + {F_j}} \right] \\ \begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} {}&{} \end{array}}&{} \end{array} + 3\mu {F_j}\cos \alpha \\ {F_{jy}} = 4{F_j}\cos \left( {90 - \alpha } \right) \\ {F_j} = A{\sigma _a} \\ 0 \leqslant A \leqslant 1419 \\ L = 2R\sin 2\alpha \\ 46 \leqslant L \leqslant 49 \\ \end{gathered} \right. $$ (3) 式中Ffy为摩擦力在钵体法线方向上的分力,N;Fjy为盘钵黏附力钵体法线方向上的分力,N。
通过上述分析可知,黏附力Fj与回转半径R以及折弯角度θ正相关,在一定范围内,随着回转半径R以及折弯角度θ减小,能有效降低黏附力Fj。
基质含水率同样对钵体内部的颗粒粘结力和钵体与穴壁之间的黏附力存在显著影响[28]。内部力的作用在于保持钵体结构稳定,而外部力的变化决定了钵体与穴壁的分离难易程度。合理的含水率范围不仅有助于优化颗粒间的粘结强度,还能调控盘钵间的黏附力。因此,本文通过物理试验探讨基质含水率对基质颗粒间粘结力和盘钵间的黏附力的影响机制,分析不同含水率下的黏附力变化规律,以选出平衡内部力与外部力的最佳含水率范围。
2.3 不同含水率钵苗拉拔试验
分别选取含水率为30.41%、41.93%、49.15%、60.84%、69.17%的钵苗进行拉拔破坏试验与拔取脱盘试验。
2.3.1 钵体拉拔破坏试验
将钵苗放入定制夹具内,确保茎秆垂直于水平面并通过夹具中心孔,然后夹紧茎秆并向上拔苗,直到根系被拔出且钵体完全破损,如图6a所示。根据参考文献[22],设定拔取速度为60 mm/min,拔取行程为60 mm。结果如图6b所示。
根据拉拔破坏试验结果可以看出,基质含水率与钵体内部力呈非线性相关,在一定范围内,随着含水率的增加,颗粒之间的粘结力增强。但当含水率达到临界值后,基质颗粒之间的水分过多,导致粘结力减弱[29]。
2.3.2 钵体拔取脱盘试验
将苗盘固定在平台上,确保茎秆垂直于水平面,然后夹紧茎秆并向上拔苗,直至钵苗完全从苗盘中取出,如图7a所示。参照文献[22],设定拔取速度为60 mm/min,拔取行程为60 mm。结果如图7b所示。
根据拉拔脱盘试验结果可以看出,基质含水率与盘钵黏附力同样呈非线性相关,在一定范围内,随着含水率的增加,盘钵黏附力增强。达到临界值后,盘钵黏附力降低[30]。
综合以上2组试验结果可以得出,当基质含水率低于30.41%和超过69.17%时,最大脱盘力远大于钵体的最大拉拔破坏力,理论上钵苗无法在取苗过程中完成脱盘操作,可能出现基质散落或钵体破损的情况。当基质含水率在41.93%~60.84%时,钵体最大拉拔破坏力与最大脱盘力较为接近,表明在该含水率范围内,在取苗过程中钵体有可能会出现破损情况。因此,应将基质含水率控制在41.93%~60.84%,再进行苗盘回转弯曲,不仅能够降低盘钵间黏附力,还能保证钵体在取苗过程中保持结构完整。
3. 关键零部件设计
3.1 送盘链条
送盘链条是送盘装置的关键部件之一,送盘链条需要保证苗盘底部空隙能准确卡在送盘杆之间,并保证作业过程中苗盘运动稳定,受力均匀,行程精准。苗盘与送盘链条位置关系如图8所示。
图 8 苗盘与送盘链条位置关系注:lx为销轴长度,mm;dx为销轴直径,mm;dp为苗盘宽度,mm;lp为苗盘长度,mm;p为链条节距,mm;hl为链板高度,mm。Figure 8. Position relationship between the seedling tray and the feeding chainNote: lx is the pin shaft length, mm; dx is the pin shaft diameter, mm ; dp is the seedling tray width, mm ; lp is the seedling tray length , mm ; p is the chain pitch, mm; hl is the chain plate heigh1 t, mm.由于送盘杆和链条销轴连通,送盘杆间距和苗盘底部空隙间距对应。因此,送盘链条节距p需满足以下关系:
$$ {d_l} = np $$ (4) 式中dl为相邻穴孔之间的距离,mm。
链条节距必须和相邻穴孔之间的距离呈整数倍关系,而现有标准链条均无法满足要求。因此,对链节进行重新设计。链节各项参数与计算如下:
$$ \left\{ \begin{gathered} p = {d_l}/2 = 21.5 \\ {d_g} = 0.4p = 8.6 \\ {h_l} = 0.48p = 10.32 \\ {t_l} = 0.06p = 1.29 \\ {b_l} = 0.4p = 8.6 \\ \end{gathered} \right. $$ (5) 式中dg为链条滚子直径,mm;tl为链板厚度,mm;bl为链条内宽,mm。
将两侧送盘链条的链节销轴连通作为送盘杆,链节销轴各参数计算如下:
$$ \left\{\begin{array}{l}{d}_{x}=0.15p~\text{0}\text{.25}p\\ 3\le {d}_{x}\le 5\\ {l}_{x}=8{t}_{l}+2{b}_{l}+{d}_{p}\end{array} \right.$$ (6) 为保证送盘的连续性,苗盘需要在送盘链条上首尾相连,均匀分布,且需要保证相邻两个苗盘之间的间距相等,本文设计送盘装置最多5个连续盘均匀分布。因此,送盘链条长度需要满足以下条件:
$$ \left\{ \begin{gathered} {L_l}{\text{ = }}5{l_p} + 5{t_j} \\ {S_l} = 130 \\ \end{gathered} \right. $$ (7) 式中Ll为链条长度,mm;tj为相邻苗盘间距,mm;Sl为链节数。
3.2 送盘链轮
送盘链轮的分度圆半径直接决定了苗盘的回转半径,根据2.2节回转弯曲钵苗力学特性分析可知,回转半径减小时盘钵间的黏附力降低,有利于钵苗顺利取出。然而,回转半径过小会导致苗盘在弯曲处产生较大应力,使苗盘结构损坏。
如图9所示,在相同机架夹角下,不同链轮半径对钵体与穴壁的作用效果有所差异。随着链轮半径的减小,苗盘的弯曲程度增大,钵体与穴壁的接触面积进一步减小,但其所承受的弯曲应力也相应增加。因此,链轮半径的大小需要确保在降低黏附力的同时,保持苗盘的结构稳定。
假设机架夹角θl为60°,则链轮半径Rl应该满足以下关系:
$$ \frac{{{E_p}{t_p}}}{{2{\sigma _y}}} \leqslant {R_l} \leqslant \frac{L}{{2\sin 2\alpha }} $$ (8) 式中Ep为苗盘弹性模量,MPa;tp为苗盘厚度,mm;σy为苗盘屈服强度,MPa。
参照文献[31],苗盘弹性模量Ep取
1200 MPa,苗盘厚度tp取1 mm,苗盘屈服强度σy取24 MPa,通过式(8)计算得出,当送苗链轮分度圆半径Rl在50.00~177.69 mm之间时苗盘不会破损,且能有效降低盘钵间黏附力。3.3 送盘机架
如图10所示,在相同链轮半径下,不同机架夹角时钵体与穴壁之间的作用效果也不同。而折弯角度θ等于送盘机架夹角θl,虽然减小折弯角度有助于降低钵体与穴壁之间的黏附力,但折弯角度过小同样会导致苗盘受力不均,造成苗盘损坏。
假设链轮半径Rl为110 mm,则机架夹角θl应该满足以下关系:
$$ \frac{{360\sigma {}_y{R_l}}}{{{E_p}{t_p}{\text{π }}}} \leqslant {\theta _l} \leqslant \arcsin \left[ {\frac{1}{G}\left( {\frac{{{F_l}}}{{\mu \cos \alpha }} - 4{F_j} - \frac{{4{F_j}\sin \alpha }}{{\mu \cos \alpha }}} \right)} \right] - \alpha $$ (9) 通过计算得出,理论上当机架夹角θl在32.66°~76.21°之间时苗盘不会破损。
4. 台架试验
为验证前文理论模型中回转半径、折弯角度与基质含水率对盘钵黏附力的作用规律,并筛选出最优参数组合以提升送盘装置性能,开展台架试验。
4.1 试验条件
试验使用的苗盘规格为5列10行,共50穴,采用聚丙乙烯塑料材料,单盘质量为152 g,苗盘尺寸为540 mm×280 mm×50 mm,穴孔为倒置棱台型,并配有排水孔。试验对象为湖南省长沙市湖南农业大学基地温室大棚内选育的“湘作油207”油菜苗,基质由草炭、蛭石及珍珠岩以质量3:1:1配制而成,试验过程中,依据《NYT2119-2012穴盘苗育苗通则》规定,采用自然光照,并定时均匀喷洒清水对穴盘苗进行养护。同时,确保基质水分均匀分布,试验用苗的苗龄为40 d。
4.2 试验设计
根据前述分析,基质含水率影响基质内部颗粒间粘结力以及钵体与穴壁间黏附力,颗粒粘结力越大,钵体的强度越高,越不容易发生散落,但同时钵体与穴壁间黏附力也相应增大,可能导致钵苗在取苗过程中无法完整取出。回转半径与折弯角度通过减小钵体与穴壁之间接触面积而改变钵体与穴壁间黏附力,随着回转半径与折弯角度减小,苗盘变形程度增大,能够有效减少盘钵间的接触面积和黏附力,但过小的回转半径与折弯角度会导致钵体结构受损。回转半径与折弯角度过大时,苗盘形变不足,黏附力减小效果有限,故选取基质含水率、回转半径、折弯角度作为试验因素。前期预试验结果表明回转半径和折弯角度对试验指标的交互效应不显著,故其交互影响忽略不记。试验设计如下:依据2.3节结果,控制含水率在41.93%~60.84%较为合理,但当含水率低于50%时,油菜苗净光合速率下降[32]。因此,基质含水率选取(50±1)%、(55±1)%、(60±1)%三个水平。根据3.2节结果,回转半径选取58 mm(17齿)、113 mm(33齿)、168 mm(49齿)三个水平。根据3.3节结果,折弯角度选取35°、55°、75°三个水平。开展L9(34)正交试验,试验因素水平如表2所示。
表 2 试验因素水平表Table 2. Experiment factors and levels table水平
Levels基质含水率
Substrate moisture
content A/%回转半径
Rotational radius B/mm折弯角度
Bending angle C/(°)1 50±1 58 35 2 55±1 113 55 3 60±1 168 75 4.3 试验指标
回转式送盘装置的设计目标是通过改变苗盘形态降低盘钵间黏附力,使得钵苗更易取出。在作业过程中,钵体的完整性直接决定了钵苗是否能够成功移栽,钵体损失越小,钵苗越能完整取出;脱盘力反映了盘钵间黏附力的大小,脱盘力的降低幅度越大,表明送盘装置对降低盘钵间黏附力越有效,所以选取钵体破损率与脱盘力变化率作为试验指标。
钵体破损率为取苗过程中散落的质量与钵苗总质量的比值。将取出的钵苗放在电子天平托盘内进行称量,称量结果记为该次试验中未损失质量mx。将取苗过程中散落部分基质收集并进行称量,称量结果记为该次试验损失质量my。钵体破损率计算式为
$$ {S_1}{\text{ = }}\frac{{{m_x}}}{{{m_x} + {m_y}}} \times 100\text{%} $$ (10) 式中S1为钵体破损率,%。
脱盘力变化率为脱盘力变化值与正常状态下脱盘力的比值。将苗盘水平放置于万能试验机上,利用万能试验机上的夹具夹紧钵苗茎秆并从苗盘中拔出,测量钵苗脱盘所需的最大力,结果记为Fa。根据表2的因素水平,制作了9种尺寸的模具模拟不同回转半径和折弯角度下的苗盘状态,测量时,先将苗盘固定在模具上,在模具的作用下苗盘呈现弯折状态,再将模具和苗盘一同固定在万能试验机上,利用万能试验机上的夹具夹紧钵苗茎秆并从苗盘中拔出,测量钵苗脱盘所需的最大力记为Fb。脱盘力变化率计算式为
$$ {S_2} = \frac{{{F_a} - {F_b}}}{{{F_a}}} \times 100\text{%} $$ (11) 式中S2为脱盘力变化率,%。
4.4 结果与分析
试验过程如图11所示,每组试验取苗20株,根据式(10)计算钵体破损率;根据式(11)计算脱盘力变化率,结果取平均值。结果表明(表3),破损率最小值为1.03%,最大值为6.52%,平均钵体破损率3.31%。脱盘力变化率最小值为5.03%,最大值为36.12%,平均脱盘力变化率为21.13%。
表 3 试验方案与结果Table 3. Experiment scheme and results试验号
Test No.A/% B/mm C/(°) 钵体破损率
Failure rate
of pots S1/%脱盘力变化率
Tray separation force rate
of change S2/%1 50±1 58 35 6.52 36.12 2 50±1 113 55 2.01 21.08 3 50±1 168 75 1.03 5.03 4 55±1 58 55 5.18 29.15 5 55±1 113 75 1.89 17.00 6 55±1 168 35 2.27 18.32 7 60±1 58 75 4.73 25.41 8 60±1 113 35 4.05 23.09 9 60±1 168 55 2.12 15.02 S1 k1 3.85 5.48 4.28 k2 3.78 2.98 3.77 k3 3.63 1.81 2.88 R 0.22 3.67 1.40 S2 k1 20.41 30.89 25.51 k2 21.57 20.47 21.75 k3 21.51 12.12 15.56 R 1.16 18.77 9.94 从表3的极差值分析可知,回转半径、折弯角度和基质含水率对钵体破损率和脱盘力变化率的影响程度依次递减。
试验过程中发现破损主要发生在钵体的边缘和上部,这些区域的根系发育较弱,拔取时钵体与苗盘分离时所需克服的黏附力集中在钵体边缘。造成钵体破损的原因主要有2个:1)部分穴盘苗生长缓慢,盘根作用力小,导致钵体的内部力较低。2)装置加工和装配存在误差,拔取时钵体与护苗杆发生硬接触,进而引发钵体破损。
钵体破损率S1越小越好,脱盘力变化率S2越大越好,本文采用加权评分法[33-34]确定较优组合。由于在作业过程中需要在保证钵体完整的情况下尽量减小脱盘力,所以钵体破损率权重设为0.6,脱盘力变化率权重设为0.4。根据式(12)、(13)分别计算两个指标的标准值。最终评价结果如表4所示。
表 4 综合评分结果Table 4. Comprehensive scoring result试验号
Test No.S1 S2 钵体破损率
标准值
Standardized value
of failure rate
Z1脱盘力变化率
标准值
Standardized value
of tray separation
force rate Z2综合评分
Comprehensive
score1 6.52 36.12 0 1.00 0.40 2 2.01 21.08 0.82 0.52 0.70 3 1.03 5.03 1.00 0 0.60 4 5.18 29.15 0.24 0.78 0.46 5 1.89 17.00 0.84 0.39 0.66 6 2.27 18.32 0.77 0.43 0.64 7 4.73 25.41 0.33 0.65 0.46 8 4.05 23.09 0.45 0.58 0.51 9 2.12 15.02 0.80 0.32 0.61 $$ {Z_1} = \frac{{{p_{\max }} - {p_i}}}{{{p_{\max }} - {p_{\min }}}} $$ (12) $$ {Z_2} = \frac{{{p_i} - {p_{\min }}}}{{{p_{\max }} - {p_{\min }}}} $$ (13) 式中Z1为钵体破损率标准值;Z2为脱盘力变化率标准值;pi为实际值,%;pmax为最大值,%;pmin为最小值,%。
由表4可知,综合两个试验指标的较优组合因素为A1B2C2,即基质含水率为(50±1)%、回转半径为113 mm、折弯角度为55°。
方差分析结果如表5所示。
表 5 各指标方差分析Table 5. Variance analysis of indicators指标
Indicators来源
Source平方和
Sum of
squares自由度
Degree of
freedom均方和
Mean of
squaresF值
F valueP值
P valueS1 A 0.475 2 0.238 1.084 0.480 B 22.170 2 11.085 50.568 0.019** C 4.684 2 2.342 10.683 0.086* 误差 0.438 2 0.219 总和 27.767 8 S2 A 0.843 2 0.421 0.041 0.961 B 458.557 2 229.279 20.177 0.043** C 152.600 2 76.300 7.380 0.119 误差 20.677 2 10.339 总和 632.678 8 注:**表示影响显著(P≤0.05);*表示影响一般显著(0.05<P≤0.1)。 Note: ** indicates significant impact (P≤0.05); * indicates generally significant impact (0.05<P≤0.1). 由表5可知,回转半径对钵体损失率和脱盘力变化率均具有显著影响。而基质含水率和折弯角度的影响均未达到显著水平,其中折弯角度对钵体破损率的影响一般显著,表明其有可能在特定条件下存在潜在影响。
4.5 验证试验
为验证优选参数组合的作业效果,开展验证试验。试验中基质含水率为(50±1)%、回转半径为113 mm、折弯角度为55°,试验方法同前。试验重复20次,结果取平均值,最终结果如表6所示。平均钵体破损率为2.24%,平均脱盘力变化率为20.57%。试验中导致钵体破损的主要原因是由于在钵体边沿部分油菜根系欠发达,基质颗粒聚合效果较差。
表 6 重复验证试验结果Table 6. Repeated demonstration test results基质含水率
Substrate moisture content /%回转半径
Rotational radius /mm折弯角度
Bending angle / (°)平均钵体破损率
Failure rate
of pots/%平均脱盘力变化率
Tray separation force rate of change/%50±1 113 55 2.24 20.57 5. 田间试验
2024年9月7日在湖南省永州市新田县现代农业示范基地进行田间试验。如图12所示。作业速度0.4 m/s,供气压力为0.7 MPa,基质含水率为(50±1)%,株距为300 mm。试验依据《旱地栽植机械》(JB/T10291-2013)[35]标准进行,以取苗成功率作为测试指标。
试验结果表明,平均取苗成功率为96.75%,相较于张妮等[22]设计的辣椒移栽机取苗成功率提升了3.7个百分点,相较于李华等[36]设计的番茄移栽机取苗成功率提升了4.75个百分点,相较于任朝阳等[37]设计的辣椒移栽机取苗成功率提升了6.01个百分点。与现有研究相比,有效提高了移栽作业质量。
田间试验取苗失败的主要原因有:1)田间作业环境下机器颠簸振动较大从而导致取苗末端执行器发生抖动脱落;2)因油菜苗叶片茎秆相互缠绕,导致有时一次夹取两株钵苗造成干涉;3)在育苗阶段时,苗盘中就存在空穴,导致在作业中出现空杯、漏栽。
6. 结 论
1)本文提出一种回转式送盘方法,通过环形输送路径改变苗盘形态,有效减小盘钵间黏附力。
2)以苗龄40 d的“湘作油207”穴盘苗为研究对象,开展不同含水率下的钵体力学特性试验,探究了含水率对颗粒粘结力和盘钵黏附力的影响机理,建立了回转弯曲过程中钵体的受力模型,完成了送盘装置各关键零部件参数设计。
3)设计了回转式送盘装置,以基质含水率、回转半径和折弯角度为试验因素进行正交试验,结果表明回转半径对钵体破损率和脱盘力变化率有显著影响,当基质含水率为(50±1)%、回转半径为113 mm、折弯角度为55°时,钵体破损率为2.01%,脱盘力变化率为21.08%。田间试验的平均取苗成功率为96.75%,满足作业要求。
-
图 1 油菜钵苗移栽机整机结构
1. 送盘装置 2. 收盘装置 3. 取苗装置 4. 苗杯 5. 动力底盘 6. 气源 7. 栽植装置 8. 电源
Figure 1. Oilseed rape seedling transplanting machine overall structure
1. Disk feeding device 2. Disk collecting device 3. Seedling picking device 4. Seedling cup 5. Power chassis 6. Air source 7. Planting device 8. Power supply
图 2 回转式送盘装置结构
1. 送盘链条 2. 送盘杆 3. 送盘链轮 4. 传动链轮 5. 伺服电机 6. 载苗机架 7. 护苗杆 8. 分苗杆 9. 苗盘
Figure 2. Rotary seedling tray conveying device structu
1. Disk feeding chain 2. Disk feeding rod 3. Disk feeding sprocket 4. Transmission sprocket 5. Servo motor 6. Seedling carrying frame 7. Seedling protection rod 8. Seedling separation rod 9. Seedling tray
图 3 回转式送盘装置工作原理示意图
①.取苗夹爪向前运动至取苗点 ②.苗盘逆时针回转向上运动1格 ③.夹取钵苗茎秆向后运动至苗杯上方 ④.松开夹爪钵苗落入苗杯中
Figure 3. Diagram of working principle of rotary seedling tray conveying device
①. The seedling gripper claw moves forward to the seedling pot gripping point ②. The seedling tray rotates counterclockwise and moves upward by one step ③. The gripper clamps the seedling stem and moves backward to above the seedling cup ④. The gripper is released, and the seedling falls into the seedling cup
图 4 常态钵苗力学特性分析
注:Fi为内部力,N;Fj为盘钵间黏附力,N;Fl为钵苗拔取力,N;Ff为摩擦力,N;G为钵苗重力,N;α为钵体侧壁与钵体法线方向夹角,(°)。
Figure 4. Mechanical properties of normal seedling tray seedlings
Note: Fi is internal force, N ;Fj is the adhesive force between the trays, N ; Fl is the force required to pull the seedling from the plug tray, N; Ff is the frictional force, N ; G is the gravitational force of the seedling, N; α is the angle between the sidewall of the plug tray and the normal direction of the tray, (°).
图 8 苗盘与送盘链条位置关系
注:lx为销轴长度,mm;dx为销轴直径,mm;dp为苗盘宽度,mm;lp为苗盘长度,mm;p为链条节距,mm;hl为链板高度,mm。
Figure 8. Position relationship between the seedling tray and the feeding chain
Note: lx is the pin shaft length, mm; dx is the pin shaft diameter, mm ; dp is the seedling tray width, mm ; lp is the seedling tray length , mm ; p is the chain pitch, mm; hl is the chain plate heigh1 t, mm.
表 1 整机作业性能参数
Table 1 Overall machine operational performance parameters
参数
Parameters值
Values作业对象Operating target 油菜钵苗 整机动力Overall machine power/kw 4 作业行数Number of working rows 2 栽植行距Planting row spacing/mm 300~500 栽植株距Planting plant spacing/mm 300~500 最大作业速度Maximum working speed/(m·s−1) 0.37 最大作业效率Maximum working efficiency/(株·h−1) 8000 表 2 试验因素水平表
Table 2 Experiment factors and levels table
水平
Levels基质含水率
Substrate moisture
content A/%回转半径
Rotational radius B/mm折弯角度
Bending angle C/(°)1 50±1 58 35 2 55±1 113 55 3 60±1 168 75 表 3 试验方案与结果
Table 3 Experiment scheme and results
试验号
Test No.A/% B/mm C/(°) 钵体破损率
Failure rate
of pots S1/%脱盘力变化率
Tray separation force rate
of change S2/%1 50±1 58 35 6.52 36.12 2 50±1 113 55 2.01 21.08 3 50±1 168 75 1.03 5.03 4 55±1 58 55 5.18 29.15 5 55±1 113 75 1.89 17.00 6 55±1 168 35 2.27 18.32 7 60±1 58 75 4.73 25.41 8 60±1 113 35 4.05 23.09 9 60±1 168 55 2.12 15.02 S1 k1 3.85 5.48 4.28 k2 3.78 2.98 3.77 k3 3.63 1.81 2.88 R 0.22 3.67 1.40 S2 k1 20.41 30.89 25.51 k2 21.57 20.47 21.75 k3 21.51 12.12 15.56 R 1.16 18.77 9.94 表 4 综合评分结果
Table 4 Comprehensive scoring result
试验号
Test No.S1 S2 钵体破损率
标准值
Standardized value
of failure rate
Z1脱盘力变化率
标准值
Standardized value
of tray separation
force rate Z2综合评分
Comprehensive
score1 6.52 36.12 0 1.00 0.40 2 2.01 21.08 0.82 0.52 0.70 3 1.03 5.03 1.00 0 0.60 4 5.18 29.15 0.24 0.78 0.46 5 1.89 17.00 0.84 0.39 0.66 6 2.27 18.32 0.77 0.43 0.64 7 4.73 25.41 0.33 0.65 0.46 8 4.05 23.09 0.45 0.58 0.51 9 2.12 15.02 0.80 0.32 0.61 表 5 各指标方差分析
Table 5 Variance analysis of indicators
指标
Indicators来源
Source平方和
Sum of
squares自由度
Degree of
freedom均方和
Mean of
squaresF值
F valueP值
P valueS1 A 0.475 2 0.238 1.084 0.480 B 22.170 2 11.085 50.568 0.019** C 4.684 2 2.342 10.683 0.086* 误差 0.438 2 0.219 总和 27.767 8 S2 A 0.843 2 0.421 0.041 0.961 B 458.557 2 229.279 20.177 0.043** C 152.600 2 76.300 7.380 0.119 误差 20.677 2 10.339 总和 632.678 8 注:**表示影响显著(P≤0.05);*表示影响一般显著(0.05<P≤0.1)。 Note: ** indicates significant impact (P≤0.05); * indicates generally significant impact (0.05<P≤0.1). 表 6 重复验证试验结果
Table 6 Repeated demonstration test results
基质含水率
Substrate moisture content /%回转半径
Rotational radius /mm折弯角度
Bending angle / (°)平均钵体破损率
Failure rate
of pots/%平均脱盘力变化率
Tray separation force rate of change/%50±1 113 55 2.24 20.57 -
[1] 廖庆喜,王洋,胡乔磊,等. 油菜基质块苗移栽机取苗装置设计与试验[J]. 农业机械学报,2020,51(11):93-102. LIAO Qingxi, WANG Yang, HU Qiaolei, et al. Design and experiment on pick-up device for rapeseed substrate seedling transplanter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(11): 93-102. (in Chinese with English abstract)
[2] 胡乔磊,张青松,李心志,等. 油菜基质块苗移栽机取苗装置设计与试验[J]. 农业工程学报,2021,37(10):18-27. DOI: 10.11975/j.issn.1002-6819.2021.10.003 HU Qiaolei, ZHANG Qingsong, LI Xinzhi, et al. Design and parameter analysis of seedling collection device of rapeseed substrate block seedlings transplanter machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(10): 18-27. (in Chinese with English abstract) DOI: 10.11975/j.issn.1002-6819.2021.10.003
[3] 全伟,吴明亮,罗海峰,等. 油菜钵苗移栽机成穴作业方式及参数优化[J]. 农业工程学报,2020,36(11):13-21. DOI: 10.11975/j.issn.1002-6819.2020.11.002 QUAN Wei, WU Mingliang, LUO Haifeng, et al. Soil hole opening methods and parameters optimization of pot seedling transplanting machine for rapeseed[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(11): 13-21. (in Chinese with English abstract) DOI: 10.11975/j.issn.1002-6819.2020.11.002
[4] 向伟,吴明亮,官春云,等. 油菜钵体苗移栽栽植孔成型机设计与试验[J]. 农业机械学报,2017,48(10):40-48,58. DOI: 10.6041/j.issn.1000-1298.2017.10.005 XIANG Wei, WU Mingliang, GUAN Chunyun, et al. Design and test of transplanting hole-forming machine for rapeseed potted seedlings[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(10): 40-48,58. (in Chinese with English abstract) DOI: 10.6041/j.issn.1000-1298.2017.10.005
[5] 俞高红,王磊,孙良,等. 大田机械化移栽技术与装备研究进展[J]. 农业机械学报,2022,53(9):1-20. YU Gaohong, WANG Lei, SUN Liang, et al. Advancement of mechanized transplanting technology and equipments for field crops[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(9): 1-20. (in Chinese with English abstract)
[6] YANG Q Z, XU L, SHI X Y, et al. Design of seedlings separation device with reciprocating movement seedling cups and its controlling system of the full-automatic plug seedling transplanter[J]. Computers and Electronics in Agriculture, 2018, 147: 131-145. DOI: 10.1016/j.compag.2018.02.004
[7] 韩长杰,周亭,尤佳,等. 蔬菜穴盘苗弧形展开式自动取投苗装置设计与试验[J]. 农业工程学报,2023,39(8):54-64. DOI: 10.11975/j.issn.1002-6819.202302045 HAN Changjie, ZHOU Ting, YOU Jia, et al. Design and experiments of an arc expansion type automatic seedling taking and throwing device for vegetable plug seedlings[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(8): 54-64. (in Chinese with English abstract) DOI: 10.11975/j.issn.1002-6819.202302045
[8] 陈建能,张晓威,刘林敏,等. 夹茎式非圆齿轮玉米钵苗移栽机构设计与试验[J]. 农业工程学报,2023,39(18):30-40. CHEN Jianneng, ZHANG Xiaowei, LIU Linmin, et al. Design and experiments of the clipping-stem type non-circular gear transplanting mechanism for corn pot seedlings[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(18): 30-40. (in Chinese with English abstract)
[9] 俞高红,王系林,刘建刚,等. 蔬菜钵苗密植移栽机多行取苗机构设计与试验[J]. 农业机械学报,2023,54(1):94-103. DOI: 10.6041/j.issn.1000-1298.2023.01.010 YU Gaohong, WANG Xilin, LIU Jiangang, et al. Design and experiment of multi row seedling taking mechanism for dense planting and transplanting of vegetable pot peedlings[J]. Transactions of the Chinese Society for Agricultural Machinery[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(1): 94-103. (in Chinese with English abstract) DOI: 10.6041/j.issn.1000-1298.2023.01.010
[10] 冯世杰,吴明亮,颜波,等. 顶出托举式钵苗脱盘装置设计与试验[J]. 农业工程学报,2020,36(5):50-58. DOI: 10.11975/j.issn.1002-6819.2020.05.006 FENG Shijie, WU Mingliang, YAN Bo, et al. Design and test of eject lifting type pot seedling detaching device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(5): 50-58. (in Chinese with English abstract) DOI: 10.11975/j.issn.1002-6819.2020.05.006
[11] 韩绿化,毛罕平,赵慧敏,等. 蔬菜穴盘育苗底部气吹式钵体松脱装置设计[J]. 农业工程学报,2019,35(4):37-45. HAN Lvhua, MAO Hanping, ZHAO Huimin, et al. Design of root lump loosening mechanism using air jets to eject vegetable plug seedlings[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(4): 37-45. (in Chinese with English abstract)
[12] 张学东,刘立晶,宁义超,等. 蔬菜移栽机顶夹式取苗装置末端执行器设计与试验[J]. 农业机械学报,2023,54(S1):115-124,134. DOI: 10.6041/j.issn.1000-1298.2023.S1.013 ZHANG Xuedong, LIU Lijing, NING Yichao, et al. Design and experiment of end effector of seedling taking by jacking and clampling of vegetable transplanter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(S1): 115-124,134. (in Chinese with English abstract) DOI: 10.6041/j.issn.1000-1298.2023.S1.013
[13] 俞高红,赵钧,单杭琦,等. 蔬菜钵苗自动移栽机纵向送盘机构设计与试验[J]. 农业机械学报,2024,55(11):285-293. DOI: 10.6041/j.issn.1000-1298.2024.11.029 YU Gaohong, ZHAO Jun, SHAN Hangqi, et al. Design and experiment of longitudinal feeding mechanism of vegetable pot seedling automatic transplanter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2024, 55(11): 285-293. (in Chinese with English abstract) DOI: 10.6041/j.issn.1000-1298.2024.11.029
[14] 姚梦娇,胡建平,刘伟,等. 基于区间分析的自动移栽机苗盘定位控制方法[J]. 农业工程学报,2023,39(4):27-36. YAO Mengjiao, HU Jianping, LIU Wei, et al. Positioning control method for the seedling tray of automatic transplanters based on interval analysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(4): 27-36. (in Chinese with English abstract)
[15] 任玲,王宁,曹卫彬,等. 番茄钵苗整排取苗手定位的模糊PID控制[J]. 农业工程学报,2020,36(8):21-30. REN Ling, WANG Ning, CAO Weibin, et al. Fuzzy PID control of manipulator positioning for taking the whole row seedlings of tomato plug seedlings[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(8): 21-30. (in Chinese with English abstract)
[16] 韩长杰,肖立强,徐阳,等. 辣椒穴盘苗自动移栽机设计与试验[J]. 农业工程学报,2021,37(13):20-29. DOI: 10.11975/j.issn.1002-6819.2021.13.003 HAN Changjie, XIAO Liqiang, XU Yang, et al. Design and experiment of the automatic transplanter for chili plug seedlings[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(13): 20-29. (in Chinese with English abstract) DOI: 10.11975/j.issn.1002-6819.2021.13.003
[17] 张静,龙新华,韩长杰,等. 机械驱动式辣椒穴盘苗自动取投苗系统设计与试验[J]. 农业工程学报,2021,37(5):20-30. DOI: 10.11975/j.issn.1002-6819.2021.05.003 ZHANG Jing, LONG Xinhua, HAN Changjie, et al. Design and experiments of mechanically-driven automatic taking and throwing system for chili plug seedlings[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(5): 20-30. (in Chinese with English abstract) DOI: 10.11975/j.issn.1002-6819.2021.05.003
[18] 刘凯强,曹卫彬,连国党,等. 穴盘苗自动移栽机苗盘输送装置的设计研究[J]. 农机化研究,2016,38(4):126-129,164. LIU Kaiqiang, CAO Weibin, LIAN Guodang, et al. Design study of plug seedlings automatic transplanting machine seedling tray delivery device[J]. Journal of Agricultural Mechanization Research, 2016, 38(4): 126-129,164. (in Chinese with English abstract)
[19] KHADATKAR A, MATHUR S M, GAIKWAD B B. Automation in transplanting: A smart way of vegetable cultivation[J]. Current Science, 2018, 115(10): 1884. DOI: 10.18520/cs/v115/i10/1884-1892
[20] GUTIERREZ C, SERWATOWSKI R, GRACIA C, et al. Design, building and testing of a transplanting mechanism for strawberry plants of bare root on mulched soil[J]. Spanish Journal of Agricultural Research, 2009, 7(4): 791-799. DOI: 10.5424/sjar/2009074-1093
[21] 孔德航,张学东,崔巍,等. 基于模糊PID的顶夹式取苗装置苗盘定位控制方法[J]. 农业机械学报,2024,55(S1):207-216,229. DOI: 10.6041/j.issn.1000-1298.2024.S1.022 KONG Dehang, ZHANG Xuedong, CUI Wei, et al. Control method for seedling tray positioning in top-clamping seedling-taking device based on fuzzy PID[J]. Transactions of the Chinese Society for Agricultural Machinery, 2024, 55(S1): 207-216,229. (in Chinese with English abstract) DOI: 10.6041/j.issn.1000-1298.2024.S1.022
[22] 张妮,张国忠,付建伟,等. 顶钵-夹茎组合式取苗装置设计与试验[J]. 农业工程学报,2024,40(3):50-61. DOI: 10.11975/j.issn.1002-6819.202309091 ZHANG Ni, ZHANG Guozhong, FU Jianwei, et al. Design and experiment of the seedling pick-up device with ejecting pot-clamping stem combination[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2024, 40(3): 50-61. (in Chinese with English abstract) DOI: 10.11975/j.issn.1002-6819.202309091
[23] 那明君,宋志超,周脉乐,等. 棘轮齿轮式水稻钵苗移栽纵向送秧机构设计与试验[J]. 农业机械学报,2015,46(11):43-48. DOI: 10.6041/j.issn.1000-1298.2015.11.007 NA Mingjun, SONG Zhichao, ZHOU Maile, et al. Design and experiment on longitudinal seedling feeding mechanism for rice pot seedling transplanting with ratchet gear[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(11): 43-48. (in Chinese with English abstract) DOI: 10.6041/j.issn.1000-1298.2015.11.007
[24] 文永双,张俊雄,张宇,等. 蔬菜穴盘苗插入顶出式取苗装置研制[J]. 农业工程学报,2020,36(22):96-104. DOI: 10.11975/j.issn.1002-6819.2020.22.011 WEN Yongshuang, ZHANG Junxiong, ZHANG Yu, et al. Development of insertion and ejection type seedling taking device for vegetable plug seedlings[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(22): 96-104. (in Chinese with English abstract) DOI: 10.11975/j.issn.1002-6819.2020.22.011
[25] 谢守勇,阳尚宏,刘军,等. 蔬菜移栽机斜插夹钵式取投苗装置研制[J]. 农业工程学报,2020,36(6):1-10. DOI: 10.11975/j.issn.1002-6819.2020.06.001 XIE Shouyong, YANG Shanghong, LIU Jun, et al. Development of the seedling taking and throwing device with oblique insertion and plug clipping for vegetable transplanters[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(6): 1-10. (in Chinese with English abstract) DOI: 10.11975/j.issn.1002-6819.2020.06.001
[26] 王秀,刘蒙滋,翟长远,等. 蔬菜移栽夹茎式取苗装置设计与试验[J]. 农业机械学报,2023,54(9):122-132. DOI: 10.6041/j.issn.1000-1298.2023.09.012 WANG Xiu, LIU Mengzi, ZHAI Changyuan, et al. Design and experiment of vegetable transplanting clip stem seedling device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(9): 122-132. (in Chinese with English abstract) DOI: 10.6041/j.issn.1000-1298.2023.09.012
[27] 谢守勇,张小亮,刘凡一,等. 基于钵苗力学特性取投苗装置动力学分析与试验[J]. 吉林大学学报(工学版),2023,53(11):3293-3304. XIE Shouyong, ZHANG Xiaoliang, LIU Fanyi, et al. Kinetic analysis and experiment of seedling taking and throwing device based on mechanical properties of plug seedlings[J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(11): 3293-3304. (in Chinese with English abstract)
[28] 叶大鹏,青家兴,吴逸腾,等. 菌草穴盘苗取投苗装置设计与试验分析[J]. 中国农机化学报,2024,45(10):9-16,53. YE Dapeng, QING Jiaxing, WU Yiteng, et al. Design and experiments analysis of automatic taking and throwing device for “Juncao” plug seedlings[J]. Journal of Chinese Agricultural Mechanization, 2024, 45(10): 9-16,53. (in Chinese with English abstract)
[29] 侯加林,张二鹏,张康博,等. 基于DEM-MFBD的辣椒移栽机取投苗装置设计与试验[J]. 农业机械学报,2023,54(12):46-57,87. HOU Jialin, ZHANG Erpeng, ZHANG Kangbo, et al. Optimization design and test of seedling picking and throwing device of plug seeding transplanter based on DEM-MFBD[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(12): 46-57,87. (in Chinese with English abstract)
[30] 胡静,韩绿化,温贻芳,等. 与自动移栽相关的不同蔬菜穴盘苗力学特性[J]. 农机化研究,2018,40(5):132-136. DOI: 10.3969/j.issn.1003-188X.2018.05.024 HU Jing, HAN Lvhua, WEN Yifang, et al. Mechanical Properties of Different Vegetable Plug Seedlings as Related to Automatic Transplanting[J]. Journal of Agricultural Mechanization Research, 2018, 40(5): 132-136. (in Chinese with English abstract) DOI: 10.3969/j.issn.1003-188X.2018.05.024
[31] 张妮. 辣椒穴盘苗自动移栽机关键部件设计与试验[D]. 武汉:华中农业大学,2023. ZHANG Ni. Design and experiment of key components of automatic transplanter for chili plug seedlings[D]. Wuhan: Huazhong Agricultural University, 2023. (in Chinese with English abstract)
[32] 辛佳佳. 不同生育时期干旱胁迫对油菜生长生理及产量的影响研究[D]. 武汉:华中农业大学,2016. XIN Jiajia. Effect of drought stress at different growth stages on growth physiology and yield of rapeseed[D]. Wuhan: Huazhong Agricultural University, 2016. (in Chinese with English abstract)
[33] 宗望远,魏鑫鑫,马丽娜,等. 食葵联合收获机圆筒清选筛结构优化与试验[J]. 农业工程学报,2023,39(6):44-53. DOI: 10.11975/j.issn.1002-6819.202301080 ZONG Wangyuan, WEI Xinxin, MA Lina, et al. Structural optimization and experiments of cylinder cleaning sieve for the edible sunflower combine harvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(6): 44-53. (in Chinese with English abstract) DOI: 10.11975/j.issn.1002-6819.202301080
[34] 王刚,关卓怀,沐森林,等. 油菜联合收获机种子籽粒脱粒装置结构及运行参数优化[J]. 农业工程学报,2017,33(24):52-57. DOI: 10.11975/j.issn.1002-6819.2017.24.007 WANG Gang, GUAN Zhuohuai, MU Senlin, et al. Optimization of operating parameter and structure for seed thresher device for rape combine harvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(24): 52-57. (in Chinese with English abstract) DOI: 10.11975/j.issn.1002-6819.2017.24.007
[35] 中华人民共和国工业和信息化部. JB/T 10291-2013旱地栽植机械[S]. 北京:机械工业出版社,2013. [36] 李华,马晓晓,曹卫彬,等. 夹茎式番茄钵苗取苗机构设计与试验[J]. 农业工程学报,2020,36(21):39-48. DOI: 10.11975/j.issn.1002-6819.2020.21.005 LI Hua, MA Xiaoxiao, CAO Weibin, et al. Design and experiment of seedling picking mechanism by stem clipping for tomato plug seedling[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(21): 39-48. (in Chinese with English abstract) DOI: 10.11975/j.issn.1002-6819.2020.21.005
[37] 任朝阳,严伟,纪要,等. 夹茎式辣椒穴盘苗取苗机构设计与试验[J]. 农业工程学报,2025,41(1):55-64. DOI: 10.11975/j.issn.1002-6819.202405219 REN Zhaoyang, YAN Wei, JI Yao, et al. Optimized design and experiment of the seedling picking mechanism for stem-clipping for pepper hole tray seedlings[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2025, 41(1): 55-64. (in Chinese with English abstract) DOI: 10.11975/j.issn.1002-6819.202405219