第 40 卷	第 23 期	农业工程学报	Vol.40 No.23	5
2024 年	12 月	Transactions of the Chinese Society of Agricultural Engineering	Dec. 2024	179

EICP 固化砂质黏性紫色土的力学性能

梅立奎¹, 汪时机^{1,2*}, 覃永富¹, 向 超¹, 李 贤¹, 黎桉君¹, 张起勇¹ (1. 西南大学工程技术学院, 重庆 400715; 2. 重庆市建筑物全生命周期健康检查与灾害防治工程研究中心, 重庆 408100)

摘 要: 紫色土结构疏松、强度低、抗蚀性和水稳性差,在强降雨、水力冲蚀作用下,干湿交替作用频繁,极易产生水 土流失。脲酶诱导碳酸钙沉淀(enzyme induced carbonate precipitation, EICP)技术可有效改良土体孔隙结构,提升土体 强度、刚度和抗蚀性,达到固化土体的效果。该研究通过正交试验探究黄豆脲酶浓度(A)、氯化钙浓度(B)与尿素 浓度(C)共同作用下的最优产钙率组合(C_R组)与最大产钙量组合(C_P组),据此开展紫色土的固化试验、干湿循环 试验、无侧限抗压试验、扫描电镜试验、X射线能谱分析和低场核磁扫描试验,探究固化效果的变化规律,并分析固化 机理。结果表明:1)EICP处理显著提升紫色土无侧限抗压强度与刚度(弹性割线模量),与对照组(C_w组)相比, C_R组和 C_P组无侧限抗压强度分别提升了104.47%和60.03%,刚度分别提升了86.36%和36.56%;2)固化试样具有良 好的耐久性,在干湿循环作用下仍保持较高的无侧限抗压强度与刚度;3)EICP固化紫色土,生成的碳酸钙晶体尺寸在 0.1~2.0 μm,可对土体中的小孔隙进行有效填充,同时将土体中的大孔隙进行胶结、覆膜,而转化为中孔隙,使紫色土 孔隙结构更加均匀。研究结果阐明EICP 对紫色土具有良好的固化效果,可为紫色土地区的地基、边坡加固和水土流失 防护等工程应用提供科学依据和参考。

关键词:紫色土; 脲酶; 碳酸钙沉淀; 干湿循环; 无侧限抗压强度; 刚度; 微观机理

doi: 10.11975/j.issn.1002-6819.202404181

中图分类号: S157.9 文献标志码: A 文章编号: 1002-6819(2024)-23-0179-11

梅立奎, 汪时机, 覃永富, 等. EICP 固化砂质黏性紫色土的力学性能[J]. 农业工程学报, 2024, 40(23): 179-189. doi: 10. 11975/j.issn.1002-6819.202404181 http://www.tcsae.org

MEI Likui, WANG Shiji, QIN Yongfu, et al. Mechanical properties of EICP solidified sandy viscous purple soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2024, 40(23): 179-189. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.202404181 http://www.tcsae.org

0 引 言

紫色土是重庆地区极具代表性的一种土壤,在四川 盆地、三峡库区广泛分布^[1]。但由于成土时间较短,土 颗粒间粘结力不足,致使紫色土土体结构疏松、强度低, 抗蚀性和水稳性差^[2-4]。再加之地形起伏较大,扰动频繁, 湿热多雨的气候环境引发干湿交替作用剧烈,使紫色土 地区水土流失、农田道路崩塌、边坡失稳等灾害时有发 生^[5],给农业生产生活、经济建设与自然环境造成极大 损失。

由于紫色土自身力学性能不足,因此需要进行加固处理提升其土体强度与抗侵蚀能力^[6]。利用微生物代谢 产物(脲酶)水解尿素所得的碳酸根离子和土体中的钙 离子结合,生成具胶结性的碳酸钙沉淀,以改良土体力 学性能的技术被称为微生物诱导碳酸钙沉积(microbially induced calcite precipitation, MICP)技术^[7-8]。MICP 技

收稿日期: 2024-04-25 修订日期: 2024-08-26

Email: 944588763@qq.com

术具有绿色环保、低耗可控等优势,近年来被广泛应用 于岩土工程和地质工程领域,但产脲酶细菌的高昂价格 以及自然环境下细菌的活性问题^[9],使得 MICP 技术的 大规模工程应用在一定程度受到制约。与 MICP 技术相 比,脲酶诱导碳酸钙沉淀 (enzyme induced carbonate precipitation, EICP) 技术,直接利用微生物代谢产生的 脲酶或从植物中提取的脲酶水解尿素,生成碳酸钙固化 土壤,有效避免了繁杂的细菌的接种、培养过程^[10],受 到众多学者的关注。

目前,大量学者围绕 EICP 的固化工艺、参数设置、 土体适应性等方面展开研究。YASUHARA 等^[11] 提出采 用脲酶代替巴氏芽孢杆菌等细菌,灌浆加固后试样的无 侧限抗压强度从 400 kPa 提升至 1.6 MPa,渗透系数降低 了一个数量级以上。NEUPANE 等^[12] 通过测试各种尿素、 氯化钙和脲酶溶液组合的沉淀率,发现即使少量脲酶也 具有明显的水解催化效果,固砂试验也证明了 EICP 技 术的有效性。吴林玉等^[13] 从黄豆提取脲酶,探究了温度、 pH 值和反应时间等对黄豆脲酶活性和碳酸钙产率的影响, 固砂试验结果表明,0.25~0.50 mm 粒径砂土固化效果最 好。张建伟等^[14-15] 利用 EICP 技术对黄泛区粉土进行固化, 证明了 EICP 技术治理粉土表面扬起的可行性。王欢等^[16] 利用 EICP 技术对弱膨胀土进行改良,有效降低了土体 的膨胀性并提升了土体力学特性。以上诸多学者的研究 主要基于砂土、粉土和膨胀土等展开,而紫色土作为新

基金项目:国家自然科学基金项目(11972311);重庆英才计划"包干制"项目(cstc2024ycjh-bgzxm0054);西南大学创新研究2035先导计划(SWU-XDPY22003);重庆市自然科学基金项目(2022NSCQ-MSX2206)作者简介:梅立奎,研究方向为生物固化土体。

[※]通信作者: 汪时机,博士,教授,博士生导师,研究方向为岩土力学。 Email: shjwang@swu.edu.cn

成土,发育缓慢,泥岩中起胶结作用的主体为黏土颗粒, 缺少化学胶结物^[17],极易受到风化和侵蚀。此外,紫色 土中含有大量粒径小于 0.075 mm 的细颗粒,土体孔隙结 构较小,采用 MICP 技术对紫色土进行处理,微生物难 以进入土体细小孔隙和土体深部,固化效果相对有限^[18]; 而 EICP 技术,使用的植物源脲酶尺寸约为 12 nm,仅为 细菌大小的 1/100 左右^[19],更容易进入土体内部,因而 更适宜于紫色土的固化。但目前针对 EICP 技术改良紫 色土的研究尚不充分,缺乏改良效果和固化机理的研究。

因此,为了进一步揭示 EICP 技术对土体宏观力学 和微细观结构的演化规律,本文基于紫色土地区农田道 路崩塌、地基回填等背景展开研究,采用预混合法对三 峡库区紫色土进行加固处理,利用正交试验优化了黄豆 脲酶浓度、氯化钙浓度与尿素浓度三因素共同作用下的 最优产钙率组合与最大产钙量组合,并据此进行室内试 验,通过力学试验探究了固化土体物理力学性能的改良 效果;通过微观试验定量表征了土体孔隙结构的变化规 律,分析固化机理,以期为紫色土地区的水土灾害防治 提供科学依据与理论指导。

1 材料与方法

1.1 脲酶提取与活性测定

1.1.1 脲酶制备与提取

试验所用脲酶为自提取黄豆脲酶,取一定质量的干燥市售黄豆放入高速粉碎机粉碎,然后置于 40 ℃ 的烘 箱中烘至完全干燥,再将烘干后的豆粉过 0.15 mm 的钢 筛。取相应质量(25、50、75、100、125、150 g)的豆 粉于烧杯之中,加入1L去离子水,将混合后的豆粉溶 液放在磁力搅拌器上搅拌 30 min 后转移至锥形瓶中,密 封置于低温环境(4℃)下 36 h。待锥形瓶中溶液分层 后,取上层豆液于离心管中,利用高速离心机以4 500 r/min 离心 15 min,所得上清液即为黄豆脲酶粗提取液(图 1)。

1.1.2 脲酶活性测定

试验采用 WHIFFIN^[20] 提出的电导率测定脲酶活性 方法,根据尿素水解量与溶液电导率变化量成正比原理, 通过测量溶液中每分钟电导率变化值来间接衡量脲酶活 性。共配置 25、50、75、100、125、150 g/L 6 种不同质 量浓度梯度的黄豆脲酶溶液,并分别在 15、30、45、60、 75 ℃条件下,将 3 mL 黄豆脲酶溶液与 27 mL 浓度为 1.0 mol/L 的尿素溶液混合,监测 10 min 内溶液电导率变 化值,得到不同温度下黄豆脲酶活性。计算方法如下:

$$U_A = 11.11\Delta C \tag{1}$$

式中 U_A 为脲酶活性, mmol/(L·min); ΔC 为电导率变化量, mS/cm。

1.2 脲酶与胶结液最优配比试验

试验所用脲酶溶液为上述提取的黄豆脲酶溶液,胶 结液为等体积的尿素溶液与氯化钙溶液的混合液,溶剂 为去离子水。尿素(CAS号: 57-13-6)与氯化钙(CAS 号: 10043-52-4)产品规格均为AR级,由重庆市钛新化 工有限公司提供,常温下避光保存。

碳酸钙的产量和转化率受黄豆脲酶浓度、胶结液浓 度和各溶液用量的影响,因此试验保持溶液用量不变, 以探究3种溶液浓度对碳酸钙的产量和转化率的直接影 响;与此同时,高浓度的胶结液会抑制脲酶的活性,致 使转化率降低,经济性下降。故采取正交试验,如表1 所示,共制备6种不同浓度黄豆脲酶溶液(A),设置 氯化钙溶液浓度(B)和尿素溶液浓度(C)分别为0.5、 1.0、1.5、2.0 mol/L。

表 1 最优配比 L_{32} (6×4²) 因素水平表

	Table 1 $L_{32} (6 \times 4^2)$) factor level table for	or optimal ratio
水平 Level	黄豆脲酶浓度 Soybean urease concentration A/ (g·L ⁻¹)	氯化钙浓度 Calcium chloride concentration B/ (mol·L ⁻¹)	尿素浓度 Urea concentration C/ (mol·L ⁻¹)
1	25	0.5	0.5
2	50	1.0	1.0
3	75	1.5	1.5
4	100	2.0	2.0
5	125	-	-
6	150	-	-

取各浓度黄豆脲酶溶液 10 mL 分别与胶结液等体积 混合均匀,静置 1 d 后,采用酸洗法测定各混合液中的 碳酸钙沉淀量。用去离子水清洗去除可溶性盐,烘干称 质量记为 m_1 ,向试样中加入过量稀盐酸直至无气泡生成, 再用去离子水清洗,随后烘干称质量记为 m_2 ,两者质量 差($m_1 - m_2$)即为碳酸钙生成量。碳酸钙产钙率S为实 际产生的碳酸钙质量与理论值之比^[21],计算式如下:

$$S = \frac{m_1 - m_2}{C_{\text{Ca}^{2+}} \cdot V \cdot M_{\text{CaCO}_3}} \times 100\%$$
(2)

式中 $C_{Ca^{2+}}$ 为胶结液中钙盐浓度, mol/L; V为胶结液体积, L; M_{CaCO_1} 为碳酸钙摩尔质量, 取 100 g/mol。

1.3 固化试验与干湿循环试验

1.3.1 试验用土

试验用土为紫色土,取自重庆市北碚区缙云山水土 保持基地,主要矿物成分为石英、钠长石、白云母、方 解石、蛭石、伊利石、蒙脱石等^[22]。基本物理性质如下: 相对密度 2.69,天然密度 1.68 g/cm³,孔隙率 48.23%, 液限 34.32%,塑限 19.51%,塑性指数 14.81。颗粒级配 曲线见图 2,由图可知,试验所用紫色土中小于 0.075 mm 的细颗粒占比为 20.46%, 而塑性指数大于 10, 因此, 被 定义为砂质黏性紫色土^[23]。

注: SL 为小于某粒径的土粒质量百分数。 Note: SL is the mass percentage of soil particles less than a certain particle size

图 2 天然紫色土粒径级配曲线

Fig.2 Particle size distribution curve of original purple soil

1.3.2 固化试验

由于正交试验在试管中进行,而工程施工则需要脲 酶水解尿素产生碳酸钙的过程在相应的土壤环境下开展。 因此,固化试验选取正交试验所得最优产钙率组合 (C_R组)与最大产钙量组合(C_P组)进行试验,设清水 组(C_w组)为对照组,固化液为黄豆脲酶溶液与胶结液 等体积混合液,加固方法为预混合法。

依照《土工试验方法标准》(GB T50123-2019)^[24], 将试验用土过 2 mm 筛后放入烘箱 105 ℃ 烘至恒质量, 并套袋密封,室温冷却。随后采用预混合法进行固化处 理^[25],先将提取的黄豆脲酶溶液按对应比例加入土中, 与土体混合均匀后,再加入胶结液进一步拌合均匀(对 照组采用去离子水),将紫色土配至 18%质量含水率, 按 1.50 g/cm³ 干密度在制样器内分 2 层压实,试样规格 为直径 39.1 mm,高度 80 mm,放入保湿缸中养护 7 d。 1.3.3 千湿循环试验

对完成固化试验后的试样分别进行 0~7 次干湿循环, 记为 N₀~N₇。为模拟在自然气候状态下,紫色土含水率 变化的 2 个极端情况,干湿循环幅度范围控制在饱和含 水率与烘干至恒质量(2%)之间。增湿过程采用水膜转 移法,将试样置于精度为 0.01 g 的电子天平上,在贴于 试样表面上的滤纸上用滴管均匀缓慢的滴入预定的水量, 然后将试样置于封闭保湿缸内养护 48 h,使水分在水膜 压力作用下逐渐转移,均匀分布于土体内。脱湿过程采 用恒温干燥箱,设定为 45 ℃,烘干至试样恒质量。之后 再采用水膜转移法将试样增湿至干湿循环前含水率 (18%),整个过程即为一次完整的干湿循环。

1.4 无侧限抗压试验

将固化后且完成相应干湿循环次数的试样置于 45 ℃ 烘箱中烘干至恒质量,后进行无侧限抗压试验。试验采用 YSH-2 型无侧限抗压仪,按《土工试验方法标准》

(GBT 50123-2019)^[24],设置加载速率为1 mm/min,绘制轴向应力与轴向应变关系曲线,取曲线上最大轴向应力作为无侧限抗压强度。

为定量表征土体受干湿循环破坏的劣化规律,本文 采用劣化度来反映干湿循环次数对土体强度的损伤程 度^[26],即劣化度越高,表明土体受干湿循环损伤程度越 高,具体计算式如下:

$$D_i = \frac{q_0 - q_n}{q_0} \times 100\%$$
(3)

式中 D_i 为无侧限抗压强度的劣化度,%; q_0 为初始状态 下试样的无侧限抗压强度,kPa; q_n 为第n次干湿循环后 试样的无侧限抗压强度,kPa。

基于应力-应变曲线,可计算试样的割线弹性模量 *E*₅₀,以研究刚度变化情况^[27],其计算式如下:

$$E_{50} = \frac{\sigma_{50}}{\varepsilon_{50}} \tag{4}$$

式中 σ_{50} 为 50% 轴向应力峰值; ε_{50} 为与 50% 轴向应力峰 值相对应的轴向应变。

1.5 微观试验

1.5.1 SEM-EDS 分析

采用扫描电镜(scanning electron microscope, SEM) 对固化前后的土体进行微观形貌观测,并用电镜配套的 X射线能谱分析仪(energy disperse dpectrometer, EDS) 对试样部分区域进行扫描,分析其元素成分及含量。试 验组选取: C_w -N₀(0次干湿循环对照组)、 C_R -N₀(0次 干湿循环最优产钙率组)、 C_P -N₀(0次干湿循环最大产 钙量组),待无侧限抗压强度试验完成后,取试样表层 10 mm 深度位置进行切块,加工为 5 mm³ 立方体,烘干 并喷金处理后放入扫描室,在 100~10 000 倍内进行测试。 1.5.2 低场核磁扫描试验

核磁共振(nuclear magnetic resonance, NMR)技术 通过施加射频脉冲,使原本处于低能态的自旋氢核吸收 能量跃迁至高能态,进而根据原子核在磁场中能量释放 速度和强度变化,间接反映岩土孔隙结构特征^[28-29]。固 化试样中的孔隙水的弛豫时间 T_2 与孔径之间的关系式为

$$T_2 = \frac{V}{\rho_2 S} \tag{5}$$

式中ρ₂为横向弛豫率,与土的物理化学性质有关,本文 取紫色土的横向弛豫率为 2.838 μm/ms。*S*₁/*V* 是孔隙表面 积与其内部流体体积之比, cm⁻¹。*T*₂ 值与孔隙体积成正 比,因此,*T*,谱分布反映了试样的孔隙大小以及孔喉分布。

试验采用型号为 MescMR12-060H-1 的纽迈核磁共振 分析系统,同样选取: C_w-N_0 (0次干湿循环对照组)、 C_R-N_0 (0次干湿循环最优产钙率组)、 C_P-N_0 (0次干湿 循环最大产钙量组)3组试样进行测试,分析固化前后 每组试样的 T_2 谱、孔喉分布和孔隙度的变化规律。

2 结果与分析

2.1 温度对脲酶活性的影响

图 3 为 6 种不同浓度梯度下的黄豆脲酶活性随温度 的变化情况。由图可知,在同一温度条件下,黄豆脲酶 活性与脲酶浓度呈正相关,即脲酶浓度越高,脲酶活性 越高。该现象主要是由于脲酶浓度提升,溶液中脲酶分 子数量增多,与尿素接触的几率增大,水解尿素的速率 也进一步提升。

温度对黄豆脲酶活性具有显著影响。脲酶活性随温度的变化规律基本可以分为3个阶段:1)15~30℃为缓慢增长阶段,此时脲酶水解尿素的反应尚处于"相对温和"状态。2)当温度在30~75℃范围内,随着温度的升高,脲酶活性快速增长,这是因为温度的升高可以增加脲酶分子的动能和振动幅度,使其更容易与尿素接触并发生反应;其中,温度介于60~75℃时,脲酶活性的增长速率开始下降,但脲酶活性仍处于较高水平,此时温度对脲酶活性的影响以促进作用为主。3)当温度超过75℃时,脲酶活性迅速降低。原因主要为脲酶的本质是蛋白质分子,高温会导致蛋白质分子的空间结构发生变化,使其失去特定的构象^[30],从而导致脲酶的部分或全部失活。上述试验结果表明,黄豆脲酶在高温环境下仍具较高活性,可满足绝大部分温度条件下的工程施工需要。

2.2 最优配比试验结果分析

采用预混合法对紫色土进行固化处理,由于固化过程中只能添加一次黄豆脲酶溶液与胶结液,而固化效果同时受到碳酸钙生成量与转换率双重效应影响^[31]。因此,为兼顾经济性与固化效果,根据正交试验结果,寻找最优产钙率组合(C_R组)和最大产钙量组合(C_P组),2 组正交试验结果与极差分析结果见表2。

指标 Index	碳酸钙产率 CaCO3 productivity/%				
JHAD INUCX	А	В	С		
k_{1j}	80.759	80.700	80.700		
k_{2j}	82.500	86.925	84.600		
k_{3j}	84.065	85.634	85.016		
k_{4j}	87.350	80.195	83.138		
k_{5j}	87.150	-	-		
k_{6j}	81.825	-	-		
R	6.591	6.730	4.316		
主次顺序	B>A>C				
最优组合	A4B2C3				

注: k_{ij}为第 j 列中,与水平 i (i=1~6)对应的各次试验结果的平均值; R 为 第 j 列中 k 的极差。下同

Note: k_{ij} represents the mean of test results associated with level *i* (*i*=1~6) in column *j*, while *R* denotes the range of *k* within column *j*. The same below.

由正交试验结果(表 2)可知,碳酸钙产钙率受到 三因素共同作用,各组分对碳酸钙产率影响大小的次序 依次为 B(氯化钙浓度)、A(黄豆脲酶浓度)、C(尿 素浓度);最佳组合为 A4B2C3(C_R组),即黄豆脲酶 浓度采用 100 g/L,氯化钙浓度为 1.0 mol/L,尿素浓度 为 1.5 mol/L。

由表3分析结果可知,各组分对碳酸钙产量影响大小的次序依次为C(尿素浓度)、B(氯化钙浓度)、A (黄豆脲酶浓度);最佳组合为A6B4C4(C_p组),即 黄豆脲酶浓度为150g/L,氯化钙浓度为2.0 mol/L,尿素 浓度为2.0 mol/L。

表 3 碳酸钙产量正交试验极差分析

	Table 3	Range	e analysis	of CaCC	₃ prec	cipitation	by	orthogonal	test
--	---------	-------	------------	---------	-------------------	------------	----	------------	------

指标 Index	碳酸钙产量 CaCO ₃ precipitation/g			
1日小 Index	Α	В	С	
k_{1j}	0.410	0.202	0.202	
k_{2j}	0.366	0.385	0.372	
k_{3j}	0.427	0.486	0.479	
k_{4j}	0.330	0.491	0.511	
k_{5j}	0.329	-	-	
k_{6j}	0.487	-	-	
R	0.158	0.297	0.309	
主次顺序	C>B>A			
最优组合	A6B4C4			

2.3 干湿循环与无侧限抗压试验结果分析

2.3.1 干湿循环对试样外形的影响

图 4 为 3 组试样经过 7 次干湿循环后的外观变化。

注: N₀~N₇分别表示 0~7次干湿循环。

Note: N_0 to N_7 indicates 0 to 7 wetting-drying cycles.

图 4 3 组试样干湿循环作用下的外观变化

Fig.4 The appearance changes of 3 groups of samples under the action of wetting-drying cycles

由图 4 可知, 未固化与固化土体在 0~7 次干湿循环

后,试样外观仍保持了完整的形状。其中,C_w组试样 在3次干湿循环后开始产生微小裂隙,在第7次干湿循 环后试样表面破损严重,呈现明显开裂或崩裂部分。C_R 组试样在第5次干湿循环后表面出现不平整凹凸变化, 第7次干湿循环后出现裂隙。C_P组试样在干湿循环的过 程中试样表面明显有白色晶体析出,试样表面未出现明 显裂隙,但第5次干湿循环后试样表面凹凸不平。仅通 过外部表现无法对干湿循环在土体中产生的影响进行定 量分析,必须结合强度试验与微观试验进行研究。

2.3.2 固化组合对试样强度的影响

根据无侧限抗压试验结果,不同固化组合与干湿循 环次数的紫色土试样应力-应变曲线如图 5 所示。

图 5 不同固化组合与干湿循环次数的应力-应变曲线 Fig.5 Stress-strain curves for different curing combinations and the number of wetting-drying cycles

由图 5 可知,紫色土的应力-应变关系曲线呈典型的 应变软化特征,曲线的峰值明显,压缩过程较快,试样 在 3% 应变范围内达到破坏;轴向应变增大到峰值后, 轴向应力急剧下降,发生破坏程度较高的脆性破坏。主 要由于脱湿后紫色土试样的含水率较低,土体相对较硬, 土颗粒间的黏聚力下降,达到抗压强度临界值后,试样 直接坍塌破坏^[32]。

取应力-应变曲线上最大轴向应力作为紫色土试样无 侧限抗压强度,表4即为3种固化组合对应干湿循环作 用下的无侧限抗压强度。

表 4 3 种固化组合对应干湿循环作用下的无侧限抗压强度

Table 4 The unconfined compressive strength for three curing combinations under the wetting-drving cycles

干湿循环次数	无侧限抗压强度					
Number of drag such as also	Unconfined compressive strength/kPa					
Number of dry-wet cycles	Cw	C _R	C _p			
0	617.92	1 263.47	988.61			
1	441.66	1 092.86	883.26			
2	384.11	817.94	844.26			
3	320.74	660.01	726.30			
4	302.22	577.14	694.13			
5	255.42	531.88	616.14			
6	234.67	476.73	550.82			
7	183.38	440.65	507.92			

由图 5 和表 4 可知, EICP 固化后,紫色土的无侧限 抗压强度得到显著提升。在 0 次干湿循环时,相较于 C_w 组试样无侧限抗压强度的 617.92 kPa, C_P 组试样无侧 限抗压强度为 998.61 kPa,提升 60.03%,而 C_R 组试样 无侧限抗压强度为 1 263.47 kPa,强度增幅较高,提升 104.47%。

2.3.3 干湿循环对试样强度的影响

3 组试样经过 0~7 次干湿循环作用后试样强度和劣 化度的变化如图 6 所示。

从图 6 可知,在干湿循环作用下,3组试样强度均呈现衰减趋势。 C_w 组试样在前3次干湿循环的过程中,劣化度增长速度较快,强度衰减明显,第3次干湿循环后,试样无侧限抗压强度为320.74 kPa,劣化度为48.27%,之后劣化度增长速度放缓,7次干湿循环后,无侧限抗压强度为183.38 kPa,劣化度为70.26%。 C_R 组试样在第1次干湿循环的过程中,劣化度相对较低,此时劣化度为13.54%,无侧限抗压强度为1092.86 kPa,但在第2次干湿循环过程中,试样劣化度迅速增长,无侧限抗压强度大幅下降,之后试样劣化度变化趋势与 C_w 组基本保持一致,在7次干湿循环后,无侧限抗压强度为440.65 kPa,劣化度为65.12%。 C_P 组试样在7次干

湿循环过程中,劣化度相较于其他两组始终保持较为平 稳的增长趋势,其中,前3次干湿循环的过程中,劣化 度增长相对较快,此时劣化度为26.55%,无侧限抗压强 度为 726.30 kPa, 之后试样劣化度缓慢增长, 在 7 次干 湿循环后,劣化度为48.63%,无侧限抗压强度为 507.92 kPa。

经 EICP 处理后,试样在干湿循环作用下仍具有良 好的耐久性,表现为相较于 Cw 组, CR 组与 CP 组试样在 经历7次干湿循环后仍保持140.29%与176.98%的增长 幅度。在干湿循环破坏过程中,Cw组劣化程度较高; C_R 组前期劣化度较低,后期劣化趋势与 C_w 组一致; C_P 组劣化度始终相对较低,7次干湿循环后,相较于Cw组, Cp组劣化度降低 21.63%, 即 3 组试样抵抗干湿循环破坏 的能力以 C_P 组最高, C_W 组最小, C_R 组介于二者之间。 2.3.4 干湿循环对试样刚度特性的影响

图 7 为干湿循环对 3 组试样 E₅₀ 的影响规律。

在干湿循环作用下,3组试样的 E50 呈现总体衰减趋 势,符合Logistic函数模型:

$$Y_W = \frac{22.409}{1 + (n/4.529)^{0.525}} + 1.851(R^2 = 0.986)$$
(6)

$$Y_P = \frac{21.113}{1 + (n/2.339)^{2.915}} + 24.036(R^2 = 0.939)$$
(7)

$$Y_R = \frac{7.012}{1 + (n/3.403)^{13.443}} + 27.600(R^2 = 0.929)$$
(8)

式中Y为 E_{50} ,其下标分别表示 C_W 、 C_P 和 C_R 组。经EICP 处理后,紫色土试样的 E50 得到显著提升。未经干湿循

环破坏时, C_w组 E₅₀=24.26 MPa, C_B组 E₅₀=45.21 MPa, Cp 组 E₅₀=33.13 MPa, 分别提升了 86.36% 和 36.56%。其 中, C_w组 E₅₀在前2次干湿循环作用下迅速衰减,之后 逐渐趋于稳定,维持在14 MPa左右,第7次干湿循环 后衰减至11.8 MPa; C_R组 E₅₀在第1次干湿循环的过程 中衰减程度较低,第2~4次干湿循环过程中衰减较快, 在第5次干湿循环后逐渐稳定,第7次干湿循环后 *E*₅₀=24.02 MPa; C_P组试样在前3次干湿循环的过程中, E50 基本保持稳定,维持在 34 MPa 左右,第 4 次干湿循 环对试样刚度影响较为显著, E₅₀迅速衰减, 之后趋于稳 定, 第7次干湿循环后 E₅₀=27.57 MPa。

注: LST 为 Logistic 拟合。

Note: LST represents the logistic regression model.

图 7 干湿循环次数对试样弹性割线模量的影响 Fig.7 The effect of wetting-drying cycles times on the elastic secant modulus (ESM) of samples

2.4 微观试验分析

2.4.1 SEM-EDS 分析

图 8 为 EICP 固化前后紫色土的 SEM 图。

a. C_w-N₀ (×3000)

b. C_R-N₀ (×3000)

c. C_P-N₀ (×3000)

注: 1~3 代表能谱分析测试区域。

Note: 1 to 3 indicates the test area of energy-dispersive spectroscopy (EDS).

图 8 EICP 固化前后紫色土的扫描电镜图

Fig.8 The scanning electron microscope images of purple soil before and after EICP curing

如图 8a 和图 8d 所示, Cw-No 组土体结构较为松散, 土颗粒间孔隙明显,且表面有部分片状黏土矿物附着, 充足的空间为脲酶在土体内部的成核与运移提供了条件。 图 8b、图 8c、图 8e 和图 8f 可显著观察到, C_R-N₀组和 C_P-N₀组土体中生成了大量碳酸钙晶体,并聚集于土颗粒 表面和土体孔隙,与土颗粒和周围片状黏土矿物形成胶 结、覆膜与填充,有效减少了土体内部的大孔隙;同时, "胶结体"连接合并形成网状骨架,使土体内部结构更 加致密,提升了固化试样的整体性与密实度。

在形状上,EICP处理生成的碳酸钙晶体尺寸为 0.1~2 μm,以不规则方形为主,并在表面伴有一定数量 的球形和球状团聚体,而 MICP 加固土体生成的碳酸钙 晶体尺寸为 5~100 μm^[33],与其相比,进一步证明 EICP 处理生成的碳酸钙尺寸更小,更适用于细粒土的固化。 图 9 为图 8 中 8a、8b、8c 这 3 处 SEM 扫描图像中 方框区域所示 EDS 能谱分析。由图 9 可知,所测区域紫 色土中 C、O、Si、AI 元素所占质量百分比较多,并伴 有少量 Ca、Mg、K 等元素,表明紫色土中主要矿物成 分以石英为主,且有部分长石、伊利石、蒙脱石、方解 石等,这与赵景波等^[17] 学者的研究保持一致。由表 5 可 知,图 9a 中 Ca 元素质量百分数为 1.14%,而图 9b、图 9c 中 Ca 元素质量百分数分别为 1.68% 和 2.04%, Ca 元素 含量增加了 47.37% 和 78.95%,表明经 EICP 处理后,土 体中 Ca 元素含量增多,结合微观形貌,进一步证明反应 产物中生成了大量碳酸钙晶体,并且晶型以球霰石、方 解石为主。

Fig.9 X-ray energy-dispersive spectroscopy of the three regions in Fig.8a-Fig.8c

表 5 图 8a \sim 图 8c 中 3 处区域的元素质量百分比和原子百分比

Table 5 The weight percent and atom percent of the elements within these regions in Fig.84- Fig.86							-	
指标 Index		С	0	Ca	Si	Mg	Al	K
C N	质量百分比 Weight percent/%	31.49	40.82	1.14	15.69	2.04	7.11	1.71
C _W -IN ₀	原子百分比 Atom percent/%	42.62	41.48	0.46	9.08	1.36	4.28	0.71
CN	质量百分比 Weight percent/%	32.10	41.05	1.68	15.09	3.04	5.93	1.10
$C_R^{-1}N_0$	原子百分比 Atom percent/%	43.17	41.44	0.68	8.68	2.02	3.55	0.46
C _P -N ₀	质量百分比 Weight percent/%	11.77	46.09	2.04	25.41	2.19	9.34	3.15
	原子百分比 Atom percent/%	18.37	54.02	0.96	16.97	1.69	6.49	1.51

2.4.2 孔隙分布分析

图 10 和图 11 分别为 C_w-N₀、C_R-N₀、C_P-N₀ 这 3 组 试样的核磁共振 *T*₂ 谱分布和孔喉分布。结合 *T*₂ 谱的理 论概念,将弛豫时间在 0.1~10 ms 视为小孔隙, 10~ 100 ms 视为中孔隙, 100~1 000 ms 视为大孔隙^[34]。

Tabla 5

图 10 3 种固化组合的 T₂ 分布

由图 10 可知, C_w 组与 C_P 组的 T₂ 谱曲线均有 3 个 波峰, 而 C_R 组的 T₂ 谱曲线都有 2 个波峰, 说明 C_R 组试

样内部孔径分布范围有所缩小;同时,与 C_w 组相比, C_R 组和 C_P 组在 0.1~10 ms 与 100~1 000 ms 范围内的 弛豫峰明显降低,而在 10~100 ms 范围内的弛豫峰变大, 表明经 EICP 固化处理后,土体中小孔隙与大孔隙占比 减小,中孔隙占比增多,孔隙结构变得更加均匀。

从图 11 所示孔喉分布可以看出,试样内部孔喉分布

主要在 0~10 µm,属于小孔隙,其中 C_w 组试样占比为 27.27%, C_R 组占比 25.49%, C_P 组占比 25.92%,说明 EICP 固化后, C_R 组和 C_P 组小孔隙占比分别减少了 1.78 和 1.35 个百分点; 10~100 µm 部分为中孔隙,在此区间内 C_w 组的孔隙总占比为 8.25%,与其相比, C_R 组为 11.37%, C_P 组为 11.78%,分别增加了 3.12 和 3.53 个百分点; 100~1000 µm 部分为大孔隙, C_w 组试样在此区间内的孔隙总占比为 3.40%,而 C_R 组和 C_P 组在此区间内占比仅为 2.09% 和 2.12%,分别减少了 1.31 和 1.28 个百分点。

2.4.3 核磁成像分析

核磁共振分析仪可对试样的内部孔隙分布情况进行 成像分析,从而得到直观反映试样内部孔隙分布规律的 核磁共振成像图^[29]。本文对不同固化组合(C_w-N₀、C_R-N₀、C_P-N₀)的紫色土试样进行核磁共振成像分析,并对 扫描的灰度图进行伪彩处理,得到以下图像(图 12)。 其中,径向分布图从左至右依次对应轴向分布断面扫描 的图像,每个试样共分5层,每层15 mm,层间距为 1 mm。图中的亮点表示水分,也可近似表示为孔隙,即 图中亮点颜色越深,分布越密集,则表示孔隙越多。

本文采用重塑土进行试验研究,为提升制样均匀性, 分层压样后土体内部表现出似"平行层理"结构,但试 样内部密度变异系数小于3%,数据的离散程度可接 受^[35]。从图 12 可以看出, C_w组试样轴向分布图中亮点 区域广泛,试样孔隙多而密集,且分布不均,分层扫描 图像中,除第1层(试样最上层)亮点分布较少外,其 余4层扫描图像亮点明显,孔隙分布较多。C_R组轴向分 布图中亮点集中分布于试样下层,且亮点面积与色彩深 度相较于 Cw 组均有显著减少,分层扫描图像中亮点分 布均匀,但亮度不明显,表明试样中孔隙分布均匀。C_p 组试样轴向扫描图像中亮点分布形式与 C_R 组试样类似, 但亮点面积与色彩深度较 C_R 组有所增加,分层扫描图像 中亮点呈散点式均匀分布,亮度较 Cw 组有所降低,试 样孔隙分布较均匀。由核磁成像试验结果可知,孔隙结 构均匀性以 C_R 组最高, C_w 组最低, C_P 组介于二者之间, 该关系与对应状态下3组试样的无侧限抗压强度结果一 致。表明经 EICP 处理后,紫色土中孔隙结构更加均匀, 试样的整体性与密实度得到有效改善,更加直观地证明

了 EICP 技术对紫色土具有良好的固化效果。

2.5 固化机理分析

根据微观试验结果分析,可将 EICP 处理生成的碳 酸钙作用方式分为以下 3 类(见图 13):1)胶结作用, 碳酸钙主要在土颗粒间沉积、聚集,将相邻的土颗粒胶 结连接。此作用形式为碳酸钙作用的主要形式,有效的 粒间胶结很大程度上增大了黏聚力与内摩擦角^[36],并且 胶结形成的网状骨架结构,使土体的整体性与密实度有 所加强,进而使土体强度和刚度得到提升。2)填充作用, 碳酸钙在土体中的小孔隙内汇聚、富集,形成团聚体, 将颗粒间的孔隙进行填充。此类作用使松散的小土颗粒 变成整体,但填充作用相对脆弱,对土体强度提升有限, 且颗粒间仍存在较多小孔隙,表明生成的碳酸钙不足以 将所有孔隙完全填充。3)覆膜作用:碳酸钙相互连接, 附着在单体颗粒表面,形成"膜状"分布,该种作用方 式仅起到减小孔隙体积和增大土颗粒表面积的作用。

a. Ureases and cementing fluid adsorbed between soil particles.

b. Three types of action modes of calcium carbonate

图 13 EICP 固化紫色土机制示意图 Fig.13 EICP curing purple soil mechanism diagram

经 EICP 处理后,对于土体中的小孔隙,生成的碳 酸钙主要发挥填充作用与胶结作用;而对于土体中的大 孔隙与中孔隙,生成的碳酸钙无法完全将其填充,主要 提供胶结作用与覆膜作用,使大孔隙转化为中孔隙,因 此,会出现小孔隙与大孔隙占比减小,中孔隙占比增多 的现象。以上作用使土体孔隙分布更为均匀,整体性有 效提升。

在干湿循环的过程中,3组试样强度与刚度均有所 下降,主要原因是紫色土中存在蒙脱石等具有一定湿胀 干缩特性的黏粒矿物成分,易在干湿交替作用下产生裂 隙[37];同时,紫色土在饱和-非饱和-饱和交替循环作用 下,土体内部出现不可逆转的结构性累积损伤,部分细 颗粒流失,孔隙增大,致使土体结构完整性丧失^[38]。两 者相互作用下, 土体强度与刚度随之降低。相较于 C_w组,经EICP处理后,土体生成的大量碳酸钙,对土 颗粒进行胶结、填充与覆膜,形成较大的团聚体,使试 样仍具有较好的抗压强度和抵抗变形能力^[39],表现为 C_R 组与 C_P 组在经历 7 次干湿循环后仍可保持较高的强 度与刚度。其中, C_p组试样保持相对较低的劣化度, 主 要是由于 C_p组脲酶溶液与胶结液均过量,在固化过程中 反应不充分,经过浸水饱和后,部分残余的钙盐与尿素 进一步接触,在脲酶的催化作用下发生"二次"反应, 土颗粒被进一步胶结填充,因而抵抗干湿循环破坏的能 力强于其他2组。

3 结 论

利用脲酶诱导碳酸钙沉淀(enzyme induced carbonate precipitation, EICP)技术对紫色土进行固化处理,研究了固化土体力学性能与微观结构的变化规律,并分析固化机理,结论如下:

1)碳酸钙产钙率和产钙量受黄豆脲酶浓度、氯化钙浓度与尿素浓度共同作用,最优产钙率组合(C_R组),采用黄豆脲酶浓度100g/L,氯化钙浓度1.0mol/L,尿素浓度1.5mol/L;最大产钙量组合(C_P组),采用黄豆脲酶浓度150g/L,氯化钙浓度2.0mol/L,尿素浓度2.0mol/L;

2) EICP 处理可显著提升紫色土无侧限抗压强度与刚度,与 C_w 组相比,C_R 组和 C_p 组无侧限抗压强度分别提升 104.47% 和 60.03%,割线弹性模量分别提升了 86.36% 和 36.56%,经过7次干湿循环后,C_R 组试样无侧限抗压强度仍保持在 440.65 kPa,C_p 组试样无侧限抗压强度为 507.92 kPa,C_R 组刚度为 24.02 MPa,C_p 组刚 度为 27.57 MPa;

3) EICP 固化紫色土,生成的碳酸钙尺寸在 0.1~ 2.0 μm,可对土体中的小孔隙进行填充、胶结,同时将 中大孔隙进行胶结、覆膜,而转化为中孔隙,使紫色土 孔隙结构更加均匀,整体性与密实度得到有效提升。核 磁成像分析也直观地证明了 EICP 技术对紫色土具有良 好的固化效果。

[参考文献]

- 鲍玉海,丛佩娟,冯伟,等.西南紫色土区水土流失综合 治理技术体系[J].水土保持通报,2018,38(3):143-150.
 BAO Yuhai, CONG Peijuan, FENG Wei, et al. Comprehensive management system of soil and water loss in purple soil area of southwestern china[J]. Bulletin of Soil and Water Conservation, 2018,38(3):143-150. (in Chinese with English abstract)
- [2] 史东梅, 蒋平, 何文健, 等. 紫色土坡耕地生物埂土壤抗 剪强度对干湿作用的响应[J]. 农业工程学报, 2016, 32(24): 139-146.

SHI Dongmei, JIANG Ping, HE Wenjian, et al. Response of soil shear strength of bio-embankments for slope farmland to drying-wetting effect in Purple Hilly Area[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(24): 139-146. (in Chinese with English abstract)

[3] 黎桉君,许冲,李贤,等.非饱和砂质黏性紫色土崩解特 性及 MICP 加固试验[J]. 农业工程学报,2021,37(22): 127-135.

LI Anjun, XU Chong, LI Xian, et al. Experimental investigation on disintegration characteristics and MICP reinforcement of unsaturated sandy clayey purple soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(22): 127-135. (in Chinese with English abstract)

 [4] 蒋倩,郑子成,王永东,等.紫色土坡面细沟侵蚀过程中泥 沙颗粒特性[J].农业工程学报,2022,38(增刊):114-121.
 JIANG Qian, ZHENG Zicheng, WANG Yongdong, et al. Characteristics of sediment particles during rill erosion on purple soil slope[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(Supp.): 114-121. (in Chinese with English abstract)

[5] 沈泰宇,李贤,汪时机,等. 微生物固化砂质黏性紫色土的三轴抗剪强度与浸水抗压强度[J]. 农业工程学报,2019,35(21):135-143.
SHEN Taiyu, LI Xian, WANG Shiji, et al. Triaxial shear strength and immersion compressive strength of sandy clayey purple soil treated by microbial induced calcite precipitation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2019,35(21):135-143. (in Chinese with English abstract)

[6] 黄鑫,郑江坤,任雨之,等.川中丘陵区紫色土坡耕地植物篱措施对土壤抗蚀性的影响[J].山地学报,2024,42(1):27-36.
HUANG Xin, ZHANG Jiangkun, REN Yuzhi, et al. Effect of hedgerow on anti-erodibility of sloping farmlands consisted of purple soil in the hilly area of central Sichuan basin[J]. Mountain Research, 2024, 42(1):27-36. (in Chinese with

[7] CHOI S G, CHANG I, LEE M, et al. Review on geotechnical engineering properties of sands treated by microbially induced calcium carbonate precipitation (MICP) and biopolymers[J]. Construction and Building Materials, 2020, 246: 1-14.

English abstract)

- [8] CHENG L, SHAHIN M A, MUJAH D. Influence of key environmental conditions on microbially induced cementation for soil stabilization[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143(1): 1-11.
- [9] 张茜,叶为民,刘樟荣,等.基于生物诱导碳酸钙沉淀的 土体固化研究进展[J].岩土力学,2022,43(2):345-357. ZHANG Qian, YE Weimin, LIU Zhangrong, et al. Advances in soil cementation by biologically induced calcium carbonate precipitation[J]. Rock and Soil Mechanics, 2022, 43(2):345-357. (in Chinese with English abstract)
- [10] HU W L, CHENG W C, WEN S J, et al. Revealing the enhancement and degradation mechanisms affecting the performance of carbonate precipitation in EICP process[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 1-12.
- [11] YASUHARA H, NEUPANE D, HAYASHI K, et al. Experiments and predictions of physical properties of sand emented by enzymatically-induced carbonate precipitation[J]. Soils and Foundations, 2012, 52(3): 539-549.
- [12] NEUPANE D, YASUHARA H, KINOSHITA N, et al. Applicability of enzymatic calcium carbonate precipitation as a soil-strengthening technique[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(12): 2201-2211.
- [13] 吴林玉, 缪林昌, 孙潇昊, 等. 植物源脲酶诱导碳酸钙固 化砂土试验研究[J]. 岩土工程学报, 2020, 42(4): 714-720.
 WU Linyu, MIAO Linchang, SUN Xiaohao, et al. Experimental study on sand solidification using plant-derived urease-induced calcium carbonate precipitation[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 714-720. (in Chinese with English abstract)

[14] 张建伟,钱思羽,王小锯,等.EICP 与木质素联合改性粉 土边坡抗雨蚀试验研究[J]. 河海大学学报(自然科学版), 2024,52(1):70-76.
ZHANG Jianwei, QIAN Siyu, WANG Xiaoju, et al. Experimental study on resistance of EICP and lignin jointmodified silt slope to rain erosion[J]. Journal of Hohai University(Natural Sciences), 2024, 52(1): 70-76. (in Chinese with English abstract)

[15] 原华,郑伟,原耀楠,等. EICP 技术固化黄泛区粉土抗压 强度实验研究[J]. 河南大学学报(自然科学版), 2022, 52(6): 727-733.

YUAN Hua, ZHENG Wei, YUAN Yaonan, et al. Experimental study on compressive strength of EICP technology solidifying silt in the yellow river flooding area[J]. Journal of Henan University(Natural Science), 2022, 52(6): 727-733. (in Chinese with English abstract)

[16] 王欢,张佳伟,郭合家. EICP 改良膨胀土的物理力学性质 试验研究[J]. 土木与环境工程学报(中英文), 2024, 46(5): 109-116.
 WANG Huan, ZHANG Jiawei, GUO Hejia. Experimental

study on physical and mechanical properties of expansive soil improved by EICP[J]. Journal of Civil and Environmental Engineering, 2024, 46(5): 109-116. (in Chinese with English abstract)

- [17] 赵景波,贺秀斌,邵天杰.重庆地区紫色土和紫色泥岩的物质组成与微结构研究[J].土壤学报,2012,49(2):212-219.
 ZHAO Jingbo, HE Xiubin, SHAO Tianjie. Material composition and microstructure of purple soil and purple mudstone in Chongqing area[J]. Acta Pedologica Sinica, 2012, 49(2):212-219. (in Chinese with English abstract)
- [18] 曹光辉,刘士雨,俞缙,等. 酶诱导碳酸钙沉淀(EICP) 技术及其在岩土工程中的应用[J]. 高校地质学报,2021, 27(6): 754-768.
 CAO Guanghui, LIU Shiyu, YU Jin, et al. Enzyme-induced calcium carbonate precipitation(EICP) and its application in geotechnical engineering[J]. Geological Journal of China Universities, 2021, 27(6): 754-768. (in Chinese with English abstract)
- [19] XIE D Z, ZHANG R, WANG, J Y. The influence of environmental factors and precipitation precursors on enzymeinduced carbonate precipitation (EICP) process and its application on modification of recycled concrete aggregates[J]. Journal of Cleaner Production, 2023, 395: 1-13.
- [20] WHIFFIN V S. Microbial CaCO₃ Precipitation: For the Production of Biocement[D]. Perth: Murdoch University, 2004.
- [21] 李贤. 微生物灌浆固化紫色土的水力-力学特性及其强化机 理研究[D]. 重庆:西南大学,2021.
 LI Xian. Study on Hydraulic-Mechanical Properties And Strengthening Mechanism Of Purple Soil Solidified By Microbial Grouting[D]. Chongqing: Southwest University,
- 2021. (in Chinese with English abstract)
 [22] 黎桉君, 汪时机, 李贤, 等. 三峡库区紫色土干缩裂隙形态几何尺寸效应[J]. 农业工程学报, 2023, 39(24): 117-126. LI Anjun, WANG Shiji, LI Xian, et al. Geometrical size effect of desiccation cracks in purple soil in the Three Gorges Reservoir areas[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(24): 117-126. (in Chinese with English abstract)
- [23] 中国建筑科学研究院.建筑地基基础设计规范: GB 50007-2011[S].北京:中国建筑工业出版社,2011.
- [24] 中国人民共和国水利部. 土工试验方法标准: GB/T 50123-2019[S]. 北京: 中国计划出版社, 2019.
- [25] 郭红仙,李东润,马瑞男,等. MICP 拌和固化钙质砂一维固结试验[J]. 清华大学学报(自然科学版), 2019, 59(8): 593-600.
 GUO Hongxian, LI Dongrun, MA Ruinan, et al. Oedometer test of calcareous sands solidified using the MICP mixing method[J]. Journal of Tsinghua University(Science and Calcareous Sands Solidified University(Science Sands Sands

Technology), 2019, 59(8): 593-600. (in Chinese with English abstract)

[26] HU C M, YUAN Y L, MEI Y, et al. Comprehensive strength deterioration model of compacted loess exposed to dryingwetting cycles[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(1): 383-398.

 [27] 闵凡路,申政,李彦澄,等. 盾构淤泥质废弃黏土氧化镁 固化-碳化试验及碳化机制研究[J]. 岩土力学,2024,45(2): 364-374.
 MIN Fanlu, SHEN Zheng, LI Yancheng, et al. Solidification

MIN Faniti, SHEN Zheng, El Fancheng, et al. Solidification and carbonization experimental study on magnesium oxide in shield waste soil and its carbonization mechanism[J]. Rock and Soil Mechanics, 2024, 45(2): 364-374. (in Chinese with English abstract)

[28] 董均贵,吕海波,陈国强.基于核磁共振技术的孔隙水形态[J].农业工程学报,2020,36(6):74-80. DONG Jungui, LYU Haibo, CHEN Guoqiang. Pore-water form determined by using NMR method and its influence on soil permeability[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(6): 74-80. (in Chinese with English abstract)

- [29] 王颖,刘瑾,马晓凡,等.基于核磁共振的聚氨酯固化砂 土[J]. 岩土工程学报,2020,42(12):2342-2349.
 WANG Ying, LIU Jin, MA Xiaofan, et al. Immersion effect of polyurethane-reinforced sand based on NMR[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12):2342-2349. (in Chinese with English abstract)
- [30] 王恒星, 缪林昌, 孙潇昊, 等. 不同温度环境下 EICP 固砂 及优化试验研究[J]. 东南大学学报(自然科学版), 2022, 52(4): 712-719.
 WANG Hengxing, MIAO Linchang, SUN Xiaohao, et al. Experimental study on sand solidification and optimization of EICP in different temperature environments[J]. Journal of Southeast University(Natural Science Edition), 2022, 52(4): 712-719. (in Chinese with English abstract)
- [31] LIN H, SULEIMAN M T, BROWN D G. Investigation of porescale CaCO3 distributions and their effects on stiffness and permeability of sands treated by microbially induced carbonate precipitation (MICP)[J]. Soils and Foundations, 2020, 60(4): 944-961.
- [32] 唐芸黎. 干湿循环作用下云南红土的无侧限抗压强度特性研究[D]. 昆明: 昆明理工大学, 2022.
 TANG Yunli. Investigation of the Unconfined Compressive Strength Characteristics of Yunnan Laterite Subjected to Wetting-Drying Cycles[D]. Kunming: Kunming University of Science and Technology, 2022. (in Chinese with English abstract)
- [33] 尹黎阳,唐朝生,谢约翰,等. 微生物矿化作用改善岩土材料 性能的影响因素[J]. 岩土力学, 2019, 40(7): 2525-2546.
 YIN Liyang, TANG Chaosheng, XIE Yuehan, et al. Factors affecting improvement in engineering properties of geomaterials by microbial-induced calcite precipitation[J]. Rock and Soil Mechanics, 2019, 40(7): 2525-2546. (in Chinese with English abstract)

[34] 黄明,张瑾璇,靳贵晓,等. 残积土 MICP 灌浆结石体冻融 损伤的核磁共振特性试验研究[J]. 岩石力学与工程学报, 2018, 37(12): 2846-2855.
HUANG Ming, ZHANG Jinxuan, JIN Guixiao, et al. Magnetic resonance image experiments on the damage feature of microbial induced calcite precipitated residual soil during freezing-thawing cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(12): 2846-2855. (in Chinese with English abstract)

[35] 白俊龙. 制样方法对重塑土试样的物理力学特性影响及细观机理研究[D]. 武汉: 武汉工程大学, 2022.
 BAI Junlong. Influence of Sample Preparation Method on

Physical and Mechanical Properties of Reconstituted Soil Samples and Research on Mesoscopic Mechanism[D]. Wuhan: Wuhan Institute of Technology, 2022. (in Chinese with English abstract)

- [36] 钱春香,王安辉,王欣. 微生物灌浆加固土体研究进展[J]. 岩土力学,2015,36(6):1537-1548.
 QIAN Chunxiang, WANG Anhui, WANG Xin. Advances of soil improvement with bio-grouting[J]. Rock and Soil Mechanics, 2015, 36(6):1537-1548. (in Chinese with English abstract)
- [37] 周锐,王保田,王东英,等.不同干湿条件下中等膨胀土 裂隙发展及作用机理分析[J].农业工程学报,2023,39(21): 98-107.

ZHOU Rui, WANG Baotian, WANG Dongying, et al. Analysis of the crack development and mechanism of moderately expansive soil under different drying-wetting conditions[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(21): 98-107. (in Chinese with English abstract)

- [38] 陈锐,张星,郝若愚,等.干湿循环下地聚合物固化黄土 强度劣化机制与模型研究[J].岩土力学,2022,43(5): 1164-1174.
 CHEN Rui, ZHANG Xing, HAO Ruoyu, et al. Shear strength deterioration of geopolymer stabilized loess under wet-dry cycles: mechanisms and prediction model[J]. Rock and Soil Mechanics, 2022, 43(5): 1164-1174. (in Chinese with English abstract)
- [39] 刘瑾,车文越,郝社锋,等.基于 CT 技术的黄原胶加固土 干湿循环条件下力学性能和微观结构劣化机制研究[J]. 岩 土工程学报,2024,46(5):1119-1126.
 LIU Jin, CHE Wenyue, HAO Shefeng, et al. Deterioration mechanism of mechanical properties and microstructure in xanthan gum-reinforced soil under wetting-drying cycles based on CT scanning technology[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 1119-1126. (in Chinese with English abstract)

Mechanical properties of EICP solidified sandy viscous purple soil

MEI Likui¹, WANG Shiji^{1,2*}, QIN Yongfu¹, XIANG Chao¹, LI Xian¹, LI Anjun¹, ZHANG Qiyong¹

(1. School of Engineering and Technology, Southwest University, Chongqing 400715, China; 2. Chongqing Engineering Research Center for Structure Full-Life-Cycle Health Detection and Disaster Prevention, Chongqing 408100, China)

Abstract: Purple soil, one very representative type of agricultural land, has been widely distributed in the Sichuan Basin and the Three Gorges Reservoir area, such as Chongqing. Among them, purple soil often exhibits a loose structure, low strength, poor corrosion resistance, and water stability. Therefore, it is prone to soil and water loss under the frequent alternating action of dry and wet conditions caused by heavy rainfall and hydraulic erosion. Enzyme Induced Carbonate Precipitation (EICP) technology can be expected to effectively enhance the pore structure, strength, stiffness, and corrosion resistance of the soil, thereby achieving soil solidification. In this study, self-extracted soybean urease was used to induce calcium carbonate precipitation, in order to solidify the purple soil. A series of tube tests were carried out to investigate the relationship between temperature and urease concentration. Furthermore, an orthogonal test was conducted to explore the optimal calcium yield combination (C_R group), as well as the maximum calcium production combination (C_P group) under the combined influence of soybean urease concentration (A), calcium chloride concentration (B), and urea concentration (C). Subsequently, curing tests, wetting-drying cycles tests, and unconfined compressive tests were performed on the purple soil samples to investigate the impact of different curing combinations and numbers of wetting-drying cycles on sample quality, appearance, unconfined compressive strength, and stiffness. The evolving nature of the curing process was characterized to analyze its mechanism by using scanning electron microscopy (SEM), X-ray energy dispersive analysis (EDS), and low-field nuclear magnetic resonance imaging (NMR). The results showed that: 1) The yield of calcium and the productivity of calcium carbonate are dependent on the concentrations of urease, calcium chloride, and urea. The optimal combination of calcium yield (C_R group) was a urease concentration of 100 g/L, a calcium chloride concentration of 1.0 mol/L, and a urea concentration of 1.5 mol/L. The maximum combination of calcium production (C_P group) was a urease concentration of 150 g/L, a calcium chloride concentration of 2.0 mol/L, and a urea concentration of 2.0 mol/L. 2) EICP treatment significantly enhanced the unconfined compressive strength and stiffness of purple soil (elastic secant modulus E_{50}). Compared with the Control group (C_w group), the unconfined compressive strength increased by 104.47% in the C_R group and by 60.03% in the C_P group; while E50 increased by 86.36% in the C_R group and by 36.56% in the C_P group. The cured sample shared excellent durability after seven wetting-drying cycles. Among them, the unconfined compressive strength remained at 440.65 kPa for the C_R group samples and at 507.92 kPa for the C_P group samples; E₅₀ reached 24.02 MPa for the C_R group and 27.57 MPa for the C_P group. 3) SEM and NMR tests were carried out to quantitatively characterize the pore structure of soil. Microscopic analysis showed that EICP was used to solidify the purple soil with generated calcium carbonate particles sized between 0.1-2.0 µm. In small pores, calcium carbonate was used to fill and cement them. While in large and medium pores, the generated calcium carbonate was provided cementation and film coating, resulting in the transformation of large pores into medium-sized ones. Thus, the proportion of small and large pores decreased greatly, while the proportion of medium pores increased. As such, a more uniform pore structure was obtained in the purple soil, in order to effectively improve its integrity and compactness. Nuclear magnetic imaging analysis also intuitively proved that the EICP technology shared a better curing effect on the purple soil. This finding can provide the scientific basis and recommendations for engineering applications, such as foundation construction, slope reinforcement, and soil erosion protection in the area of purple land.

Keywords: purple soil; urease; calcium carbonate precipitation; wetting-drying cycles; unconfined compressive strength; stiffness; microscopic mechanism